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Abstract. We apply a classical method of J.A. Nitsche [9] for the approximation of
interface conditions in the Domain Decomposition of the Finite Element Method.
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1 INTRODUCTION

In engineering calculations it happens that one has a region consisting of subdomains
with independent finite element meshes that do not match at the interfaces. A natural
idea (cf. e.g. [4, 5, 8, 1, 11]) is to introduce Lagrange multipliers to ”mortar” the subre-
gions, i.e. to approximatively enforce the interface conditions. In order that this method
should work, rather restrictive stability conditions are required. Hence, the different finite
element meshes cannot be completely arbitrary.

Since a decade it is well known that much more freedom in designing a method for a
saddle point problem is obtained by using so called stabilizing technique, cf. [7, 6] and
the references therein. Recently, this approach has been proposed in connection with
interface and boundary conditions [2, 13, 3].

In a previous paper [12] we discussed the technique of stabilizing boundary conditions
as proposed by Barbosa–Hughes [2] and Verfürth [13], and we showed that it is closely
related to a classical method of Nitsche [9]. It appears that Nitsches method is easily
implemented and robust and hence it deserves to be revived. In this communcation we
show how it can be used for mortaring.

2 THE MORTARING METHOD

Let us consider the simple Poisson model problem:

−∆u = f in Ω, (1)

u = 0 on ∂Ω.

Here Ω is a bounded domain in IRd, d = 2 or 3, with boundary ∂Ω.
For notational simplicity let us assume a decomposition of the domain into two disjont

subdomains Ω1 and Ω2 , with Ω̄ = Ω̄1 ∪ Ω̄2and the interface Υ = Ω̄1 ∩ Ω̄2. We then write
the original problem as two equations and the interface conditions:

−∆ui = f in Ωi, i = 1, 2,

u1 = u2 on Υ, (2)

∂u1

∂n1
+

∂u2

∂n2
= 0 on Υ,

ui = 0 on ∂Ω ∩ Ω̄i, i = 1, 2.

Here ni is the outward unit normal to ∂Ωi.
The two problems are clearly equivalent and it holds

u|Ωi
= ui, i = 1, 2. (3)

Suppose next that we have finite element partitionings Ci
h of the subdomains Ωi, i =

1, 2, into (say) simplices and we want to approximate the solution in each domain with

2



Rolf Stenberg

independent finite element spaces:

V i
h = { v ∈ H1(Ωi) | v|K ∈ Pk(K) ∀K ∈ Ci

h, v|∂Ω = 0 }. (4)

We now give one alternative for using Nitsche’s method for the approximate enforcement
of the interface conditions. To this end we introduce a mesh (of intervals or triangles) Eh

on Υ. Let hE be the diagonal of E ∈ Eh. Further, we let γ be a sufficiently large positive
constant (see below) and let αi be parameters satisfying

0 ≤ αi ≤ 1, α1 + α2 = 1. (5)

The method is then defined as follows.

The Mortaring Method. Find (u1
h, u

2
h) = uh ∈ Vh = V 1

h × V 2
h such that

Bh(uh; v) = Fh(v) ∀v ∈ Vh,

with

Bh(w; v) =
2∑

i=1

(∇wi,∇vi)Ωi
− 〈α1

∂w1

∂n1
− α2

∂w2

∂n2
, v1 − v2〉Υ (6)

−〈α1
∂v1

∂n1
− α2

∂v2

∂n2
, w1 − w2〉Υ + γ

∑
E∈Eh

h−1
E 〈w1 − w2, v1 − v2〉E ,

and

Fh(v) =
2∑

i=1

(f, vi)Ωi
. 2 (7)

First, we note that the formulation is consistent.

Lemma 1. The exact solution (u1, u2) to (2) satisfies the discrete variational equations:

Bh(u; v) = Fh(v) ∀v ∈ Vh. (8)

Proof : Since u1 = u2 on the interface we have

Bh(u; v) =
2∑

i=1

(∇ui,∇vi)Ωi
− 〈α1

∂u1

∂n1
− α2

∂u2

∂n2
, v1 − v2〉Υ

=
2∑

i=1

(∇ui,∇vi)Ωi
− 〈α1

∂u1

∂n1
− α2

∂u2

∂n2
, v1〉Υ + 〈α1

∂u1

∂n1
− α2

∂u2

∂n2
, v2〉Υ.
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Next, using the second interface condition, the relation α1 + α2 = 1 and integrating by
parts, we get

Bh(u; v) =
2∑

i=1

(∇ui,∇vi)Ωi
− 〈α1

∂u1

∂n1
+ α2

∂u1

∂n1
, v1〉Υ − 〈α1

∂u2

∂n2
+ α2

∂u2

∂n2
, v2〉Υ

=
2∑

i=1

(∇ui,∇vi)Ωi
− 〈∂u1

∂n1
, v1〉Υ − 〈∂u2

∂n2
, v2〉Υ

= −
2∑

i=1

(∆ui, vi)Ωi
=

2∑
i=1

(f, vi)Ωi
= Fh(v). 2

For the meshes we need the following natural condition.

Assumption. There exists positive constants C1, C2, such that

C1hKi
≤ hE ≤ C2hKi

for all Ki ∈ Ci
h and E ∈ Eh with Ki ∩ E 6= ∅, i = 1, 2. 2

From this assumption the following result follows by standard scaling arguments.

Lemma 2. There exists a positive constant CI such that

∑
E∈Eh

hE

∥∥∥α1
∂v1

∂n1

− α2
∂v2

∂n2

∥∥∥2

0,E
≤ CI

2∑
i=1

‖∇vi‖2
0,Ωi

. 2

Next, let us discuss the choice of the interface mesh Eh and the parameters γ and αi.
The most natural choice would be to let Eh be equal to E1

h or E2
h, with

E i
h = { E | E = K ∩ Υ, K ∈ Ci

h }.

In this case when we choose Eh = E i
h, then the natural choice is to choose αi = 1. Then

the constant CI is easily estimated (especially for linear elements).
The stability and error estimates will be given in the following mesh dependent norm.

‖v‖2
1,h =

2∑
i=1

‖∇vi‖2
0,Ωi

+
∑

E∈Eh

h−1
E ‖v1 − v2‖2

0,E .

The advantage of Nitsches method is the stability:

Lemma 3. Suppose that γ > CI . Then it holds

Bh(v; v) ≥ C‖v‖2
1,h ∀v ∈ Vh.
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Proof : Using the Schwartz and the arithmetic-geometric-mean inequalites, and Lemma 2
we get

Bh(v; v) =
2∑

i=1

‖∇vi‖2
0,Ωi

− 2〈α1
∂v1

∂n1
− α2

∂v2

∂n2
, v1 − v2〉Υ + γ

∑
E∈Eh

h−1
E ‖v1 − v2‖2

0,E

≥
2∑

i=1

‖∇vi‖2
0,Ωi

− 1

ε

∑
E∈Eh

hE

∥∥∥α1
∂v1

∂n1
− α2

∂v2

∂n2

∥∥∥2

0,E
+ (γ − ε)

∑
E∈Eh

h−1
E ‖v1 − v2‖2

0,E

≥
(
1 − CI

ε

) 2∑
i=1

‖∇vi‖2
0,Ωi

+ (γ − ε)
∑

E∈Eh

h−1
E ‖v1 − v2‖2

0,E)

≥ C‖v‖2
1,h,

by choosing γ > ε > CI . 2

For a function vi defined on the subdomain Ωi we define the mesh dependent norm

‖vi‖2
h,Ωi

= ‖∇vi‖2
0,Ωi

+
∑

E∈Eh

(
h−1

E ‖vi‖2
0,E + hE‖∂vi

∂ni
‖2

0,E

)
, i = 1, 2.

The interpolation estimate in this norm is proved by scaling, cf. [10]. For this we need
the assumption on the meshes.

Lemma 4. Suppose the assumption on the meshes is valid. Then it holds

inf
vi∈V i

h

‖u − vi‖h,Ωi
≤ Chk‖u‖k+1,Ωi

. 2

We now have established the stability, consistency and the optimal interpolation esti-
mates, and hence we arrive at the error estimate for the method.

Theorem. Suppose that the assumption on the meshes is valid and that γ > CI. Then it
holds

‖u − uh‖1,h ≤ Chk‖u‖k+1 . 2
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pliers. Math. Comput., 35:1113–1129, 1980.

[11] P. Seshaiyer and M. Suri. Uniform hp convergence results for the Mortar finite element
method. Technical report, Department of Mathmeatics and Statistics, University of
Maryland, Baltimore County, 1997.

[12] R. Stenberg. On some techniques for approximating boundary conditions in the finite
element method. J. Comp. Appl. Math., 63:139–148, 1995.

[13] R. Verfürth. Finite element approximation of incompressible Navier-Stokes equations
with slip boundary condition II. Numer. Math., 59:615–636, 1991.

6


