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Abstract. The paper deals with the a-posteriori error analysis of mixed finite
element methods for second order elliptic equations. It is shown that a reliable
and efficient error estimator can be constructed using a postprocessed solution
of the method. The analysis is performed in two different ways; under a
saturation assumption and using a Helmholtz decomposition for vector fields.

1. Introduction

We consider the mixed finite element approximation of second order elliptic
equations with the Poisson problem as a model:

−∆u = f in Ω ⊂ Rn,(1.1)
u = 0 on ∂Ω.(1.2)

The problem is written as the system

σ −∇u = 0,(1.3)
div σ + f = 0,(1.4)

which is approximated with the
Mixed method. Find (σh, uh) ∈ Sh × Vh ⊂ H(div :Ω)× L2(Ω) such that

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Sh,(1.5)
(div σh, v) + (f, v) = 0 ∀v ∈ Vh.(1.6)

In the method the polynomial used for approximating the flux σ is of higher degree
than that used for the displacement u, which is counterintuitive in view of (1.3).
As a consequence, the mixed method has to be carefully designed in order to satisfy
the Babuška-Brezzi conditions, c.f. e.g. [8]. There are two ways of posing these
conditions, both yielding the same a priori estimates. The more common one is
to use the H(div :Ω) norm for the flux and the L2(Ω) norm for the displacement.
The other one is to use so called mesh dependent norms [3] which are close to the
energy norm of the continuous problem.

The a posteriori error analysis of mixed methods has been performed in [1],
[10] and [5]. In [10] the estimate is for the H(div : Ω) norm. This is in a way
unsatisfactory since the ”div” part of the norm is trivially computable and also
may dominate the error, see Remark 3.4 below. In [5] an estimate for the L2-norm
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of the flux is derived but it is, however, not optimal. The reason for this is that the
estimator includes the element residual in the constitutive relation (1.3). As the
polynomial degree of approximation for the displacement is lower than that for the
flux, it is clear that this residual is large.

The purpose of this paper is to point out a simple remedy to this. Since the
work of Arnold and Brezzi [2] it is known that the mixed finite element solution
can be locally postprocessed in order to obtain an improved displacement. Later
other postprocessing has been proposed [6, 9, 7, 17, 16]. On each element the
postprocessed displacement is of one degree higher than the flux, which is in ac-
cordance with (1.3). Hence, it is natural to use it in the a posteriori estimate. In
this paper, we will focus on the postprocessing introduced in [17, 16]. In Section 2
we develop an a-priori error analysis by recognizing that the postprocessed output
can be viewed as the direct solution of a suitable modified method. In Section 3
we introduce our estimator based on the postprocessed solution, and we prove its
efficiency and reliability.

Throughout the paper we will use standard notations for Sobolev norms and
seminorms. Moreover, we will denote with C and Ci (i = 1, 2, ...) generic constants
independent of the mesh parameter h, which may take different values in different
occurrences.

2. A-priori estimates and postprocessing

In this section we will consider the mixed methods, their postprocessing and error
analysis. We will also give the stability and error analysis by treating the method
and the postprocessing as one method. This will be useful for the a posteriori
analysis.

We will use standard notation used in connection with (mixed) FE methods.
By Ch we denote the finite element regular partitioning and by Γh the collection
of edges or faces of Ch. The subspaces (σh, uh) ∈ Sh × Vh ⊂ H(div : Ω) × L2(Ω)
are piecewise polynomial spaces defined on Ch. In this paper we will consider the
following families of elements. (The results are, however, easily applicable for other
families as well.)

• RTN elements – the triangular elements of Raviart-Thomas [15] and their
tetrahedral counterparts of Nedelec [14];

• BDM elements – the triangular elements of Brezzi-Douglas-Marini [9] and
their tetrahedral counterparts of Brezzi-Douglas-Duran-Fortin [7].

Accordingly, given an integer k ≥ 1, we define:

(2.1) SRTN
h = { τ ∈ H(div :Ω) | τ |K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) ∀K ∈ Ch }

(2.2) SBDM
h = { τ ∈ H(div :Ω) | τ |K ∈ [Pk(K)]n ∀K ∈ Ch }

(2.3) V RTN
h = V BDM

h = { v ∈ L2(Ω) | v|K ∈ Pk−1(K) ∀K ∈ Ch },
where P̃k−1(K) denotes the homogeneous polynomials of degree k− 1. For quadri-
lateral and hexahedral meshes there exist a wide choice of different alternatives, c.f.
[8].

By defining the following bilinear form

B(ϕ, w; τ , v) = (ϕ, τ ) + (div τ , w) + (div ϕ, v)(2.4)
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the mixed method can compactly be defined as:
Find (σh, uh) ∈ Sh × Vh such that

(2.5) B(σh, uh; τ , v) + (f, v) = 0 ∀(τ , v) ∈ Sh × Vh.

For the displacement and the flux we will use the following norms:

(2.6) ‖v‖21,h =
∑

K∈Ch

‖∇v‖20,K +
∑

E∈Γh

h−1
E ‖[[v]]‖20,E ,

and

(2.7) ‖τ‖20,h = ‖τ‖20 +
∑

E∈Γh

hE‖τ · n‖20,E ,

where n is the unit normal to E ∈ Γh and [[v]] is the jump in v along interior
edges/faces and v on edges/faces on ∂Ω. By an element by element partial integra-
tion we have

(2.8) |(div τ , v)| ≤ ‖τ‖0,h‖v‖1,h ∀(τ , v) ∈ Sh × Vh.

In the FE subspace the norm for the flux is equivalent to the L2-norm:

(2.9) C‖τ‖0,h ≤ ‖τ‖0 ≤ ‖τ‖0,h ∀τ ∈ Sh.

Hence, it also holds

(2.10) |(div τ , v)| ≤ C‖τ‖0‖v‖1,h ∀(τ , v) ∈ Sh × Vh.

With this choice of norms the Babuška-Brezzi stability condition is the following.

Lemma 2.1. There is a positive constant C such that

(2.11) sup
τ∈Sh

(div τ , v)
‖τ‖0 ≥ C‖v‖1,h ∀v ∈ Vh.

Proof. We first point out that since V RTN
h = V BDM

h and SRTN
h ⊂ SBDM

h the
result for BDM is a consequence of that for RTN. Therefore, we focus on the RTN
family, first recalling that the local degrees of freedom for the flux variable are the
following:

〈τ · n, z〉E ∀z ∈ Pk−1(E), E ⊂ ∂K,(2.12)
(τ ,z)K ∀z ∈ [Pk−2(K)]n.(2.13)

Above and in the rest of the paper, we use the notation (·, ·)K and 〈·, ·〉E for the
L2 inner product on the element K and on the edge/face E, respectively.

Hence, given v ∈ Vh we can define τ ∈ Sh by

〈τ · n, z〉E = h−1
E 〈[[v]], z〉E ∀z ∈ Pk−1(E), E ∈ Γh,(2.14)

(τ , z)K = −(∇v, z)K ∀z ∈ [Pk−2(K)]n, K ∈ Ch.(2.15)

Noting that ∇v|K ∈ [Pk−2(K)]n, [[v]]|E ∈ Pk−1(E), from (2.14)–(2.15) we obtain

〈τ · n, [[v]]〉E = h−1
E ‖[[v]]‖20,E ,(2.16)

(τ ,∇v)K = −‖∇v‖20,K .(2.17)

It follows that (cf. also (2.6))
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(div τ , v) = −
∑

K∈Ch

(τ ,∇v)K +
∑

E∈Γh

〈τ · n, [[v]]〉E(2.18)

=
∑

K∈Ch

‖∇v‖20,K +
∑

E∈Γh

h−1
E ‖[[v]]‖20,E = ‖v‖21,h

Using scaling arguments (2.14)–(2.15) imply

(2.19) ||τ ||0,h ≤ C||v||1,h.

The assertion now follows from (2.18) and (2.19). ¤

From this stability estimate, the following full stability result holds.

Lemma 2.2. There is a positive constant C such that

(2.20) sup
(τ ,v)∈Sh×Vh

B(ϕ, w; τ , v)
‖τ‖0 + ‖v‖1,h

≥ C
(‖ϕ‖0 + ‖w‖1,h

) ∀(ϕ, w) ∈ Sh × Vh.

In our analysis we will exploit the interpolation operator Rh : H(div : Ω) ∩
[Ls(Ω)]n → Sh, with s > 2, such that

(2.21) (div (τ −Rhτ ), v) = 0 ∀v ∈ Vh,

which can be constructed by using the degrees of freedom for Sh, cf. [15, 14, 9, 7].
In addition, we will use the equilibrium property

(2.22) div Sh ⊂ Vh.

When denoting by Ph : L2(Ω) → Vh the L2-projection, this implies that

(2.23) (div τ , u− Phu) = 0 ∀τ ∈ Sh.

The projection and interpolation operators satisfy the following commuting prop-
erty:

(2.24) div Rh = Phdiv .

Theorem 2.3. There is a positive constant C such that

(2.25) ‖σ − σh‖0 + ‖Phu− uh‖1,h ≤ C‖σ −Rhσ‖0.
Proof. By Lemma 2.2 there is a pair (τ , v) ∈ Sh × Vh, with ‖τ‖0 + ‖v‖1,h ≤ C,
such that

(2.26) ‖σh −Rhσ‖0 + ‖uh − Phu‖1,h ≤ B(σh −Rhσ, uh − Phu; τ , v).

Next, (2.21), (2.23) and (2.24) give

B(σh −Rhσ, uh − Phu; τ , v)
= (σh −Rhσ, τ ) + (div τ , uh − Phu) + (div (σh −Rhσ), v)(2.27)
= (σ −Rhσ, τ ) ≤ ‖σ −Rhσ‖0‖τ‖0 ≤ C‖σ −Rhσ‖0.

The assertion then follows from the triangle inequality. ¤

This gives (assuming full regularity):

‖σ − σh‖0 + ‖Phu− uh‖1,h ≤ Chk+1|σ|k+1 for BDM,(2.28)

‖σ − σh‖0 + ‖Phu− uh‖1,h ≤ Chk|σ|k for RTN.(2.29)
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We note that these estimates contain a superconvergence result for ‖Phu− uh‖1,h.
This, together with the fact that σh is a good approximation of ∇u, implies that
an improved approximation for the displacement can be constructed by local post-
processing. Below we will consider the method introduced in [17, 16]. The postpro-
cessed displacement is sought in a FE space V ∗

h ⊃ Vh. For our choices, the spaces
are

V ∗BDM
h = { v ∈ L2(Ω) | v|K ∈ Pk+1(K) ∀K ∈ Ch },(2.30)

V ∗RTN
h = { v ∈ L2(Ω) | v|K ∈ Pk(K) ∀K ∈ Ch }.(2.31)

Postprocessing method. Find u∗h ∈ V ∗
h such that

(2.32) Phu∗h = uh

and

(2.33) (∇u∗h,∇v)K = (σh,∇v)K ∀v ∈ (I − Ph)V ∗
h |K .

The error analysis of this postprocessing is done in [17, 16]. Here we proceed in
a slightly different way by considering the method and the postprocessing as one
method. To this end we define the bilinear form

Bh(ϕ, w∗; τ , v∗) =(ϕ, τ ) + (div τ , w∗) + (div ϕ, v∗)(2.34)

+
∑

K∈Ch

(∇w∗ −ϕ,∇(I − Ph)v∗)K .

Then we have the following equivalence to the original problem.

Lemma 2.4. Let (σh, u∗h) ∈ Sh × V ∗
h be the solution to the problem

(2.35) Bh(σh, u∗h; τ , v∗) + (Phf, v∗) = 0 ∀(τ , v∗) ∈ Sh × V ∗
h ,

and set uh = Phu∗h ∈ Vh. Then (σh, uh) ∈ Sh × Vh coincides with the solution
of (1.5)–(1.6). Conversely, let (σh, uh) ∈ Sh × Vh be the solution of (1.5)–(1.6),
and let u∗h ∈ V ∗

h be the postprocessed displacement defined by (2.32)–(2.33). Then
(σh, u∗h) ∈ Sh × V ∗

h is the solution to (2.35).

Proof. Testing by (τ , 0) ∈ Sh × V ∗
h in (2.35) gives

(2.36) (σh, τ ) + (div τ , u∗h) = 0 ∀τ ∈ Sh.

The equilibrium property (2.22) implies

(2.37) (div τ , u∗h) = (div τ , uh).

Hence, (1.5) is satisfied. Next, for a generic v∗ ∈ V ∗
h set v = Phv∗ ∈ Vh and

observe that Vh = Ph(V ∗
h ). Testing in (2.35) with (0, v), and using the fact that

(Phf, v) = (f, v), we obtain

(2.38) (div σh, v) + (f, v) = 0 ∀v ∈ Vh,

i.e. the equation (1.6). Conversely, let (σh, uh) ∈ Sh× Vh be the solution of (1.5)–
(1.6), and let u∗h ∈ V ∗

h be defined by (2.32)–(2.33). Splitting a generic v∗ ∈ V ∗
h as

v∗ = Phv∗ + (I − Ph)v∗ we have
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(2.39)
Bh(σh, u∗h; τ , v∗) = Bh(σh, u∗h; τ , Phv∗) + Bh(σh, u∗h;0, (I − Ph)v∗)

= (σh, τ ) + (div τ , u∗h) + (div σh, Phv∗) +
∑

K∈Ch

(∇u∗h − σh,∇(I − Ph)Phv∗)K

+ (div σh, (I − Ph)v∗) +
∑

K∈Ch

(∇u∗h − σh,∇(I − Ph)(I − Ph)v∗)K

= (σh, τ ) + (div τ , uh)− (Phf, Phv∗) = −(Phf, v∗) ∀(τ , v∗) ∈ Sh × V ∗
h .

Therefore, (σh, u∗h) ∈ Sh × V ∗
h solves (2.35). ¤

Next, we prove the stability. In the proof we will use the following norm equiv-
alence.

Lemma 2.5. There are positive constants C1 and C2, such that

(2.40) ‖w∗‖1,h ≤ ‖Phw∗‖1,h + ‖(I − Ph)w∗‖1,h ≤ C2‖w∗‖1,h

and

(2.41) C1‖w∗‖1,h ≤ ‖Phw∗‖1,h +
( ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

)1/2

≤ C2‖w∗‖1,h,

for every w∗ ∈ V ∗
h .

Proof. We first prove (2.40). The estimate

‖w∗‖1,h ≤ ‖Phw∗‖1,h + ‖(I − Ph)w∗‖1,h

follows immediately from the triangle inequality. To continue, we notice that

(2.42) ‖Phw∗‖1,h + ‖(I − Ph)w∗‖1,h ≤ 2‖Phw∗‖1,h + ‖w∗‖1,h

We now fix an interior edge/face E, and we consider the elements K1 and K2 such
that E = K1 ∩K2. A scaling argument shows that

(2.43) h−1
E ‖[[Phw∗]]‖20,E +

2∑

i=1

‖∇Phw∗‖20,Ki
≤ C

(
h−1

E ‖[[w∗]]‖20,E +
2∑

i=1

‖∇w∗‖20,Ki

)
.

If E ⊂ K is an edge/face lying in ∂Ω, a similar argument gives

(2.44) h−1
E ‖Phw∗‖20,E + ‖∇Phw∗‖20,K ≤ C

(
h−1

E ‖w∗‖20,E + ‖∇w∗‖20,K

)
.

The estimate

(2.45) ‖Phw∗‖1,h + ‖(I − Ph)w∗‖1,h ≤ C2‖w∗‖1,h

easily follows from (2.42)–(2.44) (cf. also (2.6)). Hence, (2.40) is proved.
To prove (2.41) we first notice that (2.45) implies

(2.46) ‖Phw∗‖1,h +
( ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

)1/2

≤ C2‖w∗‖1,h.

Next, scaling arguments lead to
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h−1
E ‖[[w∗]]‖20,E +

2∑

i=1

‖∇w∗‖20,Ki
≤ C

(
h−1

E ‖[[Phw∗]]‖20,E(2.47)

+
2∑

i=1

(‖∇Phw∗‖20,Ki
+ ‖∇(I − Ph)w∗‖20,Ki

))
,

for an interior edge/face E, and to

h−1
E ‖w∗‖20,E + ‖∇w∗‖20,K ≤ C

(
h−1

E ‖Phw∗‖20,E(2.48)

+ ‖∇Phw∗‖20,K + ‖∇(I − Ph)w∗‖20,K

)
,

for a boundary edge/face E. The estimate

C1‖w∗‖1,h ≤ ‖Phw∗‖1,h +
( ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

)1/2

is a consequence of (2.47)–(2.48). The proof is complete. ¤

Lemma 2.6. There is a positive constant constant C such that

(2.49) sup
(τ ,v∗)∈Sh×V ∗h

Bh(ϕ, w∗; τ , v∗)
‖τ‖0 + ‖v∗‖1,h

≥ C
(‖ϕ‖0 + ‖w∗‖1,h

) ∀(ϕ, w∗) ∈ Sh × V ∗
h .

Proof. Let (ϕ, w∗) ∈ Sh×V ∗
h be arbitrary. By choosing v∗ = v ∈ Vh and using the

equilibrium condition (2.22) we then get

Bh(ϕ, w∗; τ , v) = (ϕ, τ ) + (div τ , w∗) + (div ϕ, v)(2.50)
= (ϕ, τ ) + (div τ , Phw∗) + (div ϕ, v)
= B(ϕ, Phw∗; τ , v),

Hence, the stability of Lemma 2.2 implies that we can choose (τ , v) such that

(2.51) Bh(ϕ, w∗; τ , v) ≥ (‖ϕ‖20 + ‖Phw∗‖21,h

)

and

(2.52) ‖τ‖0 + ‖v‖1,h ≤ C1

(‖ϕ‖0 + ‖Phw∗‖1,h

)
.
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Next, (2.10) and Schwarz inequality give

Bh(ϕ, w∗;0, (I − Ph)w∗)(2.53)

= (div ϕ, (I − Ph)w∗) +
∑

K∈Ch

(∇w∗ −ϕ,∇(I − Ph)w∗)K

≥ −C2‖ϕ‖0‖(I − Ph)w∗‖1,h +
∑

K∈Ch

(∇w∗,∇(I − Ph)w∗)K

= −C2‖ϕ‖0‖(I − Ph)w∗‖1,h +
∑

K∈Ch

(∇Phw∗,∇(I − Ph)w∗)K

+
∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

≥ −(
C2‖ϕ‖0 + ‖Phw∗‖1,h

)‖(I − Ph)w∗‖1,h

+
∑

K∈Ch

‖∇(I − Ph)w∗‖20,K .

We now notice that (I−Ph)w∗ is L2–orthogonal to the piecewise constant functions;
therefore, a scaling argument shows that

(2.54) ‖(I − Ph)w∗‖1,h ≤ C3

( ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

)1/2

.

For α > 0, we obtain from (2.53) and (2.54)

Bh(ϕ, w∗;0, (I − Ph)w∗)(2.55)

≥ − 1
2α

(
C2‖ϕ‖0 + ‖Phw∗‖1,h

)2 − α

2
‖(I − Ph)w∗‖21,h

+
∑

K∈Ch

‖∇(I − Ph)w∗‖20,K

≥ − 1
2α

(
C2‖ϕ‖0 + ‖Phw∗‖1,h

)2

+
(

1− αC2
3

2

) ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K .

Choosing α > 0 sufficiently small, we get
(2.56)

Bh(ϕ, w∗;0, (I − Ph)w∗) ≥ C4

( ∑

K∈Ch

‖∇(I − Ph)w∗‖20,K − ‖ϕ‖20 − ‖Phw∗‖21,h

)
.

Combining (2.51) and (2.56), with δ > 0 to be chosen, we have

Bh(ϕ, w∗; τ , v + δ(I − Ph)w∗)(2.57)

≥ (1− δC4)
(‖ϕ‖20 + ‖Phw∗‖21,h

)
+ δC4

∑

K∈Ch

‖∇(I − Ph)w∗‖20,K .

Next, by (2.41) we have

(2.58) ‖Phw∗‖21,h + δ
∑

K∈Ch

‖∇(I − Ph)w∗‖20,K ≥ C5‖w∗‖21,h.
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From (2.52) and (2.40) we have

‖τ‖0 + ‖v + δ(I − Ph)w∗‖1,h

≤ ‖τ‖0 + ‖v‖1,h + δ‖(I − Ph)w∗‖1,h(2.59)

≤ C1

(‖ϕ‖0 + ‖Phw∗‖1,h

)
+ δ‖(I − Ph)w∗‖1,h

≤ C6

(‖ϕ‖0 + ‖w∗‖1,h

)
.

Choosing δ = 1/(2C4), estimate (2.49) is proved by combining (2.57)–(2.59). ¤

Theorem 2.7. The following a priori error estimate holds

‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ C
(‖σ −Rhσ‖0 + inf

v∗∈V ∗h
‖u− v∗‖1,h

)
.

Proof. From Lemma 2.6 it follows that there is (ϕ, w∗) ∈ Sh × V ∗
h , with ‖ϕ‖0 +

‖w∗‖1,h ≤ C, such that

(2.60)
(‖σh −Rhσ‖0 + ‖u∗h − v∗‖1,h

) ≤ Bh(σh −Rhσ, u∗h − v∗;ϕ, w∗).

Next, from the definition of Bh and the equations (1.3)–(1.4) it follows that

(2.61) Bh(σ, u; ϕ, w∗) + (f, w∗) = 0.

Hence it holds

Bh(σh −Rhσ, u∗h − v∗; ϕ, w∗)(2.62)
= Bh(σ −Rhσ, u− v∗; ϕ, w∗) + (f − Phf, w∗).

Writing out the right hand side we have

Bh(σ −Rhσ, u− v∗; ϕ, w∗) + (f − Phf, w∗)(2.63)
= (σ −Rhσ, ϕ) + (div ϕ, u− v∗) + (div (σ −Rhσ), w∗)

+
∑

K∈Ch

(∇(u− v∗)− (σ −Rhσ),∇(I − Ph)w∗)K + (f − Phf, w∗).

The commuting property (2.24) gives

(2.64) (div (σ −Rhσ), w∗) = −(f − Phf, w∗).

Hence, the third and the last term on the right hand side of (2.63) cancel. The
other terms are directly estimated

(σ −Rhσ,ϕ) ≤ ‖σ −Rhσ‖0‖ϕ‖0 ≤ C‖σ −Rhσ‖0,(2.65)
(div ϕ, u− v∗) ≤ C‖ϕ‖0‖u− v∗‖1,h ≤ C‖u− v∗‖1,h(2.66)

and using (2.41)
∑

K∈Ch

(∇(u− v∗)− (σ −Rhσ),∇(I − Ph)w∗)K(2.67)

≤ C
(‖u− v∗‖1,h + ‖σ −Rhσ‖0

)‖w∗‖1,h

≤ C
(‖u− v∗‖1,h + ‖σ −Rhσ‖0

)
.

The assertion then follows by collecting the above estimate and using the triangle
inequality. ¤

For our choices of spaces we obtain the estimates (with the assumption of a
sufficiently smooth solution).
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Corollary 2.8. There are positive constants C such that

‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ Chk+1|u|k+2 for BDM,(2.68)

‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ Chk|u|k+1 for RTN.(2.69)

3. A-posteriori estimates

We define the following local error indicators on the elements

(3.1) η1,K = ‖∇u∗h − σh‖0,K , η2,K = hK‖f − Phf‖0,K ,

and on the edges

(3.2) ηE = h
−1/2
E ‖[[u∗h]]‖0,E .

Using these quantities, the global estimator is

(3.3) η =
( ∑

K∈Ch

(
η2
1,K + η2

2,K

)
+

∑

E∈Γh

η2
E

)1/2

.

The efficiency of the estimator is given by the following lower bounds, which
directly follow from (1.3) using the triangle inequality, and from (3.2) noting that
[[u]] = 0 on each edge E.

Theorem 3.1. It holds

(3.4)
η1,K ≤ ‖∇(u− u∗h)‖0,K + ‖σ − σh‖0,K ,

ηE = h
−1/2
E ‖[[u− u∗h]]‖0,E .

As far as the estimator reliability is concerned, below we will use two different
techniques.

3.1. Reliability via a saturation assumption. The first technique to prove the
upper bound is based on the following saturation assumption. We let Ch/2 be
the mesh obtained from Ch by refined each element into 2n (n = 2, 3) elements.
For clarity all variables in the spaces defined on Ch will be equipped with the
subscript h whereas h/2 will be used for those defined on Ch/2. Accordingly, we let
(σh/2, u

∗
h/2) ∈ Sh/2 × V ∗

h/2 be the solution to
(3.5)

Bh/2(σh/2, u
∗
h/2; τh/2, v

∗
h/2) + (Ph/2f, v∗h/2) = 0 ∀(τh/2, v

∗
h/2) ∈ Sh/2 × V ∗

h/2.

As already done in [5], we make the following assumption for the solutions of
(2.35) and (3.5).
Saturation assumption. There exists a positive constant β < 1 such that

(3.6) ‖σ − σh/2‖0 + ‖u− u∗h/2‖1,h/2 ≤ β
(‖σ − σh‖0 + ‖u− u∗h‖1,h

)
.

Since it holds

(3.7) ‖u− u∗h‖1,h ≤ ‖u− u∗h‖1,h/2

we also have

(3.8) ‖σ − σh/2‖0 + ‖u− u∗h/2‖1,h/2 ≤ β
(‖σ − σh‖0 + ‖u− u∗h‖1,h/2

)
.

Using the triangle inequality we then get

(3.9) ‖σ − σh‖0 + ‖u− u∗h‖1,h/2 ≤
1

1− β

(‖σh/2 − σh‖0 + ‖u∗h/2 − u∗h‖1,h/2

)
.



ENERGY NORM A POSTERIORI ESTIMATES FOR MIXED METHODS 11

By again using (3.7) we obtain

(3.10) ‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ 1
1− β

(‖σh/2 − σh‖0 + ‖u∗h/2 − u∗h‖1,h/2

)
.

We now prove the following result.

Theorem 3.2. Suppose that the saturation assumption (3.6) holds. Then there
exists a positive constant C such that

(3.11) ‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ Cη.

Proof. By (3.10) it is sufficient to prove the following bound

(3.12) ‖σh/2 − σh‖0 + ‖u∗h/2 − u∗h‖1,h/2 ≤ Cη.

By Lemma 2.6 applied to the finer mesh Ch/2, there is (τh/2, v
∗
h/2) ∈ Sh/2 × V ∗

h/2,
with ‖τh/2‖0 + ‖v∗h/2‖1,h/2 ≤ C, such that

(‖σh − σh/2‖0 + ‖u∗h − u∗h/2‖1,h/2

)
(3.13)

≤ Bh/2(σh − σh/2, u
∗
h − u∗h/2; τh/2, v

∗
h/2).

Using the fact that

(3.14) (σh/2, τh/2) + (div τh/2, u
∗
h/2) = 0

we have

Bh/2(σh − σh/2, u
∗
h − u∗h/2; τh/2, v

∗
h/2)

= (σh − σh/2, τh/2) + (div τh/2, u
∗
h − u∗h/2) + (div (σh − σh/2), v∗h/2)

+
∑

K∈Ch/2

(∇(u∗h − u∗h/2)− (σh − σh/2),∇(I − Ph/2)v∗h/2)K(3.15)

= (σh, τh/2) + (div τh/2, u
∗
h) + (div (σh − σh/2), v∗h/2)

+
∑

K∈Ch/2

(∇u∗h − σh,∇(I − Ph/2)v∗h/2)K ,

We now notice that it holds (cf. (2.9))

(3.16) C‖τh/2‖0,h ≤ ‖τh/2‖0 ≤ ‖τh/2‖0,h ∀τh/2 ∈ Sh/2.

Therefore, using (3.16) and (3.1)–(3.3), we obtain

(σh, τh/2) + (div τh/2, u
∗
h)

=
∑

K∈Ch

(σh −∇u∗h, τh/2)K +
∑

E∈Γh

〈τh/2 · n, [[u∗h]]〉E

≤
∑

K∈Ch

‖σh −∇u∗h‖0,K‖τh/2‖0,K +
∑

E∈Γh

‖τh/2 · n‖0,E‖[[u∗h]]‖0,E(3.17)

≤ η‖τh/2‖0,h ≤ ηC‖τh/2‖0 ≤ Cη.

Similarly for the last term in (3.15) we get using (2.40)
∑

K∈Ch/2

(∇u∗h − σh,∇(I − Ph/2)v∗h/2)K ≤ Cη‖(I − Ph/2)v∗h/2‖1,h/2(3.18)

≤ Cη‖v∗h/2‖1,h/2 ≤ Cη.
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When estimating the term (div (σh − σh/2), v∗h/2) in (3.15) we recall that

div σh = −Phf and div σh/2 = −Ph/2f,

and that Ph, Ph/2 are L2-projection operators. Therefore, we have

(div (σh − σh/2), v∗h/2) = (Ph/2f − Phf, v∗h/2)(3.19)

= (Ph/2f − f, v∗h/2) + (f − Phf, v∗h/2)

= (Ph/2f − f, v∗h/2 − Ph/2v
∗
h/2) + (f − Phf, v∗h/2 − Phv∗h/2).

Next, we use the following interpolation estimates, which are easily proved by
standard scaling arguments (cf. [5, Lemma 3.1]):

‖v∗h/2 − Phv∗h/2‖0,K ≤ ChK |v∗h/2|1,h/2,K , ∀K ∈ Ch,

where
|v∗h/2|21,h/2,K =

∑

Ki

‖∇v∗h/2‖20,Ki
+

∑

Ei

h−1
Ei
‖[[v∗h/2]]‖20,Ei

.

Here Ki ⊂ K are the elements of Ch/2 and Ei are the edges of Γh/2 lying in the
interior of K. This gives

(f − Phf, v∗h/2 − Phv∗h/2) ≤ C
( ∑

K∈Ch

h2
K‖f − Phf‖20,K

)1/2‖v∗h/2‖1,h/2(3.20)

≤ C
( ∑

K∈Ch

h2
K‖f − Phf‖20,K

)1/2 ≤ Cη.

We also have

(Ph/2f − f, v∗h/2 − Ph/2v
∗
h/2) ≤

∑

K∈Ch/2

‖f − Ph/2f‖0,K‖v∗h/2 − Ph/2v
∗
h/2‖0,K

≤ C
∑

K∈Ch/2

hK‖f − Ph/2f‖0,K‖∇v∗h/2‖0,K

≤ C
( ∑

K∈Ch/2

h2
K‖f − Ph/2f‖20,K

)1/2‖v∗h/2‖1,h/2(3.21)

≤ C
( ∑

K∈Ch/2

h2
K‖f − Ph/2f‖20,K

)1/2

≤ C
( ∑

K∈Ch

h2
K‖f − Ph/2f‖20,K

)1/2
.

Since, by the properties of L2-projection operators, it holds

‖f − Ph/2f‖0,K ≤ ‖f − Phf‖0,K ∀K ∈ Ch,

from (3.21) we obtain

(3.22) (Ph/2f − f, v∗h/2 − Ph/2v
∗
h/2) ≤ C

( ∑

K∈Ch

h2
K‖f − Phf‖20,K

)1/2 ≤ Cη.

By collecting the estimates (3.17)–(3.20) and (3.22), from (3.15) we get

(3.23) Bh/2(σh − σh/2, u
∗
h − u∗h/2; τh/2, v

∗
h/2) ≤ Cη.

The assertion now follows from (3.13). ¤
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We have presented the above proof since this is rather general and can be used
for other problems as well. In [13] we use it for a plate bending method.

3.2. Reliability via a Helmholtz decomposition. Now, let us give another
proof of the estimator reliability, not relying on the saturation assumption.

Theorem 3.3. Suppose that Ω ⊂ R2 is a simply connected domain. Then there
exists a positive constant C such that

(3.24) ‖σ − σh‖0 + ‖u− u∗h‖1,h ≤ Cη.

Proof. We use the techniques of [11] and [10]. We first notice that

(3.25) ||σ − σh||0 = sup
ϕ∈L2(Ω)

(σ − σh, ϕ)
||ϕ||0 .

For a generic ϕ ∈ L2(Ω), we consider the L2-orthogonal Helmholtz decomposi-
tion (see, e.g. [12]):

(3.26) ϕ = ∇ψ + curl q, ψ ∈ H1
0 (Ω), q ∈ H1(Ω)/R,

with

(3.27) ||ϕ||0 =
(
||∇ψ||20 + ||curl q||20

)1/2

.

Therefore, from (3.25)–(3.27) we see that it holds

(3.28) ||σ − σh||0 ≤ sup
ψ∈H1

0 (Ω)

(σ − σh,∇ψ)
|ψ|1 + sup

q∈H1(Ω)/R

(σ − σh, curl q)
|q|1 .

Given ψ ∈ H1
0 (Ω), from (1.4) and (1.6) it follows that

(3.29)
(
div (σ − σh), Phψ

)
= 0.

Hence, we have

(3.30)

(σ − σh,∇ψ) =− (div (σ − σh), ψ)

=− (div (σ − σh), ψ − Phψ)

≤C
( ∑

K∈Ch

h2
K ||div (σ − σh)||20,K

)1/2

|ψ|1

≤C
( ∑

K∈Ch

h2
K ||f − Phf ||20,K

)1/2

|ψ|1.

As a consequence, we get (cf. (3.1))

(3.31)

sup
ψ∈H1

0 (Ω)

(σ − σh,∇ψ)
|ψ|1 ≤ C

( ∑

K∈Ch

h2
K ||f − Phf ||20,K

)1/2

= C
( ∑

K∈Ch

η2
2,K

)1/2

.
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To continue, let Ihq be the Clément interpolant of q in the space of continuous
piecewise linear functions (see [4], for instance) satisfying

(3.32) ‖q − Ihq‖1 +
( ∑

E∈Γh

h−1
E ||q − Ihq||20,E

)1/2

≤ C|q|1.

Noting that curl Ihq ∈ Sh, and div curl Ihq = 0, from (1.3) and (1.5) we get

(3.33) (σ − σh, curl Ihq) = 0.

Therefore, using (3.32), one has
(3.34)

(σ − σh, curl q) =
(
σ − σh, curl(q − Ihq)

)

=
(∇u− σh, curl(q − Ihq)

)
= −(

σh, curl(q − Ihq)
)

=−
∑

K∈Ch

(
σh −∇u∗h , curl(q − Ihq)

)
K

+
∑

K∈Ch

(∇u∗h , curl(q − Ihq)
)
K

≤C
( ∑

K∈Ch

||σh −∇u∗h||20,K

)1/2

|q|1 +
∑

K∈Ch

(∇u∗h , curl(q − Ihq)
)
K

.

Furthermore, an integration by parts and standard arguments and (3.32) give

(3.35)

∑

K∈Ch

(∇u∗h, curl(q − Ihq)
)
K

= −
∑

K∈Ch

〈∇u∗h · t , q − Ihq〉∂K

=−
∑

E∈Γh

〈[[∇u∗h · t]], q − Ihq〉E

≤
( ∑

E∈Γh

hE ||[[∇u∗h · t]]||20,E

)1/2( ∑

E∈Γh

h−1
E ||q − Ihq||20,E

)1/2

≤C
( ∑

E∈Γh

h−1
E ||[[u∗h]]||20,E

)1/2

|q|1.

From (3.34) and (3.35) we obtain (see (3.1) and (3.2))
(3.36)

sup
q∈H1(Ω)/R

(σ − σh, curl q)
|q|1 ≤ C

( ∑

K∈Ch

||σh −∇u∗h||20,K +
∑

E∈Γh

h−1
E ||[[u∗h]]||20,E

)1/2

= C
( ∑

K∈Ch

η2
1,K +

∑

E∈Γh

η2
E

)1/2

.

Using (3.31) and (3.36) we deduce

(3.37) ||σ − σh||0 ≤ C
( ∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

.

We now estimate the term ||u− u∗h||1,h. We first recall that

(3.38) ||u− u∗h||1,h =
( ∑

K∈Ch

‖∇(u− u∗h)‖20,K +
∑

E∈Γh

h−1
E ‖[[u− u∗h]]‖20,E

)1/2
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and we notice that (cf. (3.2))

(3.39)
( ∑

E∈Γh

h−1
E ‖[[u− u∗h]]‖20,E

)1/2

=
( ∑

E∈Γh

h−1
E ‖[[u∗h]]‖20,E

)1/2

=
( ∑

E∈Γh

η2
E

)1/2

.

We have

(3.40)

‖∇(u−u∗h)‖20,K =
(∇u−∇u∗h ,∇(u− u∗h)

)
K

=
(
σ −∇u∗h ,∇(u− u∗h)

)
K

=
(
σ − σh,∇(u− u∗h)

)
K

+
(
σh −∇u∗h ,∇(u− u∗h)

)
K

≤
(
||σ − σh||0,K + ||σh −∇u∗h||0,K

)
||∇(u− u∗h)||0,K ,

by which we obtain

(3.41) ‖∇(u− u∗h)‖0,K ≤ ||σ − σh||0,K + ||σh −∇u∗h||0,K .

Hence we infer

(3.42)
( ∑

K∈Ch

||∇(u− u∗h)||20,K

)1/2

≤ ||σ − σh||0 +
( ∑

K∈Ch

||σh −∇u∗h||20,K

)1/2

.

Using (3.37) and recalling (3.1), from (3.42) we get

(3.43)
( ∑

K∈Ch

||∇(u− u∗h)||20,K

)1/2

≤ C
( ∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

.

Therefore, joining (3.39) and (3.43) we obtain

(3.44) ||u− u∗h||1,h ≤ C
( ∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

.

From (3.37) and (3.44) we finally deduce (see (3.3))

(3.45) ||σ − σh||0 + ||u− u∗h||1,h ≤ C
( ∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

= Cη.

¤

We end the paper by the following

Remark 3.4. On the estimate in the H(div :Ω)-norm. In the paper we have repeat-
edly used the fact that by the equilibrium property (2.22) we have div (σ − σh) =
Phf −f and hence ‖div (σ−σh)‖0 = ‖f −Phf‖0 is a quantity that is directly com-
putable from the data to the problem. For the BDM spaces it furthermore holds
that for a general loading and a smooth solution it holds ‖f − Phf‖0 = O(hk),
whereas ‖σ −σh‖0 = O(hk+1), and hence this trivial component in the H(div :Ω)
norm can dominate the whole estimate. ¤
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