Coprime factorizations and stabilizability of infinite-dimensional linear systems

Kalle M. Mikkola Helsinki University of Technology Finland Kalle.Mikkola@hut.fi http://www.math.hut.fi/~kmikkola/

13th December 2005

CDC-ECC'05

MTNS06, 13th of December 2005

Main Theorem

The following are equivalent for a holomorphic function P:

- (i) *P* has a dynamic stabilizing controller.
- (ii) *P* has a right coprime factorization. [Smith89] [M05d]
- (iii) *P* has a stabilizable and detectable realization. [Staffans98] [CurOpm05] [M05c]

We work in discrete time, but essentially the same results hold in continuous time too. Part of the results are new even in the scalar-valued case.

As corollaries, one obtains analogous results for exponential (power) stabilization.

Notation

U,X,Y: complex Hilbert spaces of arbitrary dimensions.

- \mathbb{D} : the unit disc $\{z \in \mathbb{C} \mid |z| < 1\}$.
- $\mathcal{B}(U, Y)$: bounded linear maps $U \to Y$.

 $\mathrm{H}^{\infty}(\mathtt{U},\mathtt{Y})$: the set of bounded holomorphic functions $\mathbb{D} \to \mathcal{B}(\mathtt{U},\mathtt{Y})$.

 $\label{eq:I:I} I: \quad \text{the identity operator, e.g., } I = I_{\tt U} \in \mathcal{B}({\tt U},{\tt U}), \text{ or the corresponding constant} \\ \quad \text{function, e.g., } I = I_{\tt U} \in \mathrm{H}^{\infty}({\tt U},{\tt U}).$

proper function = holomorphic (operator-valued) function defined near the origin; **strictly proper** = P is proper and P(0) = 0;

stable = H^{∞} (a restriction of a H^{∞} function is identified with the H^{∞} function).

Motivation: $P \in H^{\infty}(U, Y) \Longrightarrow P$ is bounded (stable) multiplication operator $H^{2}(U) \rightarrow H^{2}(Y)$.

Dynamic (output-feedback) stabilization

Figure 1: Controller Q for the transfer function P

stabilizing controller = $\begin{bmatrix} u_{in} \\ y_{in} \end{bmatrix} \mapsto \begin{bmatrix} u \\ y \end{bmatrix}$ is stable (H^{∞}).

A proper $\mathscr{B}(Y,U)$ -valued function Q is called a (dynamic output feedback) proper stabilizing controller for a proper $\mathscr{B}(U,Y)$ -valued function P if the "input-to-error" map $E: \begin{bmatrix} u_{\text{in}} \\ y_{\text{in}} \end{bmatrix} \mapsto \begin{bmatrix} u \\ y \end{bmatrix}$ in Figure 1 is stable ($E \in H^{\infty}$). The map E is obviously given by

$$E := \begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - QP)^{-1} & Q(I - PQ)^{-1} \\ P(I - QP)^{-1} & (I - PQ)^{-1} \end{bmatrix}.$$
 (1)

(Observe that then P is also a proper stabilizing controller for Q.)

Right coprime

The following are equivalent for a proper holomorphic function P:

(i) *P* has a proper stabilizing controller *Q* (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathrm{H}^{\infty}$).

(ii) *P* has a right coprime factorization.

(iii) *P* has a stabilizable and detectable realization.

Two functions $M, N \in \mathrm{H}^{\infty}$ are called (Bézout) right coprime if $\begin{bmatrix} M \\ N \end{bmatrix}$ is left-invertible in H^{∞} , i.e., if there exist $\tilde{X}, \tilde{Y} \in \mathrm{H}^{\infty}$ satisfying the *Bézout identity*

$$\tilde{X}M - \tilde{Y}N \equiv I$$
 (on \mathbb{D}). (2)

We call the factorization $P = NM^{-1}$ a right coprime factorization of P if $N \in H^{\infty}(U, Y)$ and $M \in H^{\infty}(U)$ are right coprime, M(0) is invertible and $P = NM^{-1}$.

Then $Q = \tilde{X}^{-1}\tilde{Y}$ is a stabilizing controller for P (if \tilde{X}^{-1} exists).

All stabilizing controllers

Let P be $\mathcal{B}(U, Y)$ -valued and have a right coprime factorization $P = NM^{-1}$. Then $\begin{bmatrix} M \\ N \end{bmatrix} \in \mathrm{H}^{\infty}(U, U \times Y)$ can be extended to an invertible element of $\mathrm{H}^{\infty}(U \times Y)$, say $\begin{bmatrix} M & Y \\ N & X \end{bmatrix}$. (This is called a *doubly coprime factorization* of P.) [Tolokonnikov81] [Treil04] [M05d]

All stabilizing controllers for *P* are given by the **Youla(–Bongiorno) parameterization**

$$Q = (Y + MV)(X + NV)^{-1}$$
(3)

where $V \in H^{\infty}(Y, U)$ is arbitrary (the controller is proper iff $(X + NV)^{-1}$ is proper). [CuWeWe01] [M05d]

If P is strictly proper (P(0) = 0), then all these controllers are proper.

Matrix-valued case

Let P be a proper $\mathbb{C}^{n \times m}$ -valued function. Then also the following are equivalent to the existence of a proper stabilizing controller:

(i*) *P* has a stable $(Q \in H^{\infty}(\mathbb{C}^n, \mathbb{C}^m))$ stabilizing controller. [Treil92] [Quadrat04]

(ii*) $P = NM^{-1}$, where $N, M \in H^{\infty}$, $N^*N + M^*M \ge \varepsilon I$ on \mathbb{D} , $\varepsilon > 0$ and $\det M \neq 0$. [Carleson62] [Fuhrman68]

(The corona condition in (ii') is not sufficient for coprimeness in the operator-valued case [Treil89]. It is not known whether (i') is necessary in general.)

Controllers with internal loop

Also the following is equivalent to the existence of a proper stabilizing controller of P:

(i") P has a stabilizing controller with internal loop. [CuWeWe01] [M05d]

We call R a stabilizing controller with internal loop for P if $R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$ is a proper $\mathcal{B}(Y \times \Xi, U \times \Xi)$ -valued function for some Hilbert space Ξ and the combined map $\begin{bmatrix} u_{\text{in}} \\ y_{\text{in}} \\ \xi_{\text{in}} \end{bmatrix} \mapsto \begin{bmatrix} u \\ \xi \end{bmatrix}$ in Figure 2 becomes stable (H^{∞}).

Figure 2: Controller R with internal loop for P

If $I - R_{22}(0)$ is invertible, then R corresponds to the proper stabilizing controller $Q = R_{11} + R_{12}(I - R_{22})^{-1}R_{21}$.

MTNS06, 13th of December 2005

Main Theorem (ver. 3)

The following are equivalent for a proper function P:

(i) *P* has a proper stabilizing controller *Q* (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathrm{H}^{\infty}$).

(i') P has a strictly proper stabilizing controller.

(i") P has a stabilizing controller with internal loop.

(ii) P has a right coprime factorization $P = NM^{-1}$.

(ii') P has a left coprime factorization $P = \tilde{M}^{-1}\tilde{N}$.

(ii'') *P* has a doubly coprime factorization $P = NM^{-1}$, $\begin{bmatrix} M & Y \\ N & X \end{bmatrix}^{-1} \in \operatorname{H}^{\infty}(\mathbb{U} \times \mathbb{Y})$.

(iii) *P* has a stabilizable and detectable realization.

Discrete-time system $(\frac{A \mid B}{C \mid D}) \in \mathcal{B}(X \times U, X \times Y)$

Given input $u \in \ell^2(\mathbb{N}; \mathbb{U})$ and initial state $x_0 \in X$, we associate the state trajectory $x : \mathbb{N} \to X$ and output $y : \mathbb{N} \to Y$ through

$$\begin{cases} x_{k+1} = Ax_k + Bu_k, \\ y_k = Cx_k + Du_k, \end{cases} \quad k \in \mathbb{N}.$$
(4)

The transfer function $P(z) := D + C(z^{-1} - A)^{-1}B$ of $\left(\frac{A \mid B}{C \mid D}\right)$ is proper.

We call $\left(\frac{A \mid B}{C \mid D}\right)$ a realization of *P*.

The **Z-transform** \hat{u} of $u : \mathbb{N} \to U$ is defined by $\hat{u}(z) := \sum_n z^n u_n$.

For $x_0 = 0$, we have $\hat{y} = P\hat{u}$.

State feedback $u_k = Fx_k$

State feedback means that we feed the state back to the input through some **state-feedback operator** $F \in \mathcal{B}(X, U)$:

$$u_k := F x_k + (u_{\rm in})_k \qquad (k \in \mathbb{N}), \tag{5}$$

where u_{in} denotes an exogenous input (or disturbation), as in Figure 3.

Figure 3: State-feedback connection

$$\Rightarrow x_{k+1} = (A + BF)x_k + B(u_{\rm in})_k \Rightarrow \left(\begin{array}{c|c} \frac{A + BF & B}{C} & D\\ F & I\end{array}\right) : \begin{bmatrix} x_k \\ (u_{\rm in})_k \end{bmatrix} \mapsto \begin{bmatrix} x_{k+1} \\ y_k \\ u_k \end{bmatrix}.$$

Closed-loop system

$$\begin{pmatrix} A+BF & B \\ \hline C+DF \\ F \end{bmatrix} & \begin{bmatrix} D \\ I \end{bmatrix} \end{pmatrix} : \begin{bmatrix} x_k \\ (u_{in})_k \end{bmatrix} \mapsto \begin{bmatrix} x_{k+1} \\ y_k \\ u_k \end{bmatrix}.$$
(6)

The transfer function of the **closed-loop system** (6) is obviously given by

$$\begin{bmatrix} N(z) \\ M(z) \end{bmatrix} = \begin{bmatrix} D \\ I \end{bmatrix} + \begin{bmatrix} C+DF \\ F \end{bmatrix} (z^{-1} - A - BF)^{-1}B.$$
 (7)

Because $\begin{bmatrix} N \\ M \end{bmatrix}$ maps $\widehat{u_{in}} \mapsto \begin{bmatrix} \widehat{y} \\ \widehat{u} \end{bmatrix}$, a factorization of $P : \widehat{u} \mapsto \widehat{y}$ is given by $P = NM^{-1}$.

Finite Cost Condition (FCC): For each $x_0 \in X$, some $u \in \ell^2$ makes $y \in \ell^2$.

If(f) the FCC holds, then there exists $F \in \mathcal{B}(X, U)$ that minimizes $\sum_{k=0}^{\infty} (||y_k||_Y^2 + ||u_k||_U^2)$ (LQR cost) for every x_0 .

The resulting factorization $P = NM^{-1}$ is weakly coprime [M05a]. If the FCC holds for $\left(\frac{A^* \mid C^*}{B^* \mid D^*}\right)$, then $P = NM^{-1}$ is right coprime [C005].

State-feedback stabilization of $\left(\frac{A \mid B}{C \mid D}\right)$

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 output stable $= y \in \ell^2$ whenever $x_0 \in X$ and $u = 0$;
i.e., $\|CA^{\cdot}x_0\|_2 \leq K \|x_0\|_X$ $(x_0 \in X)$.

 $\left(\frac{A \mid B}{C \mid D}\right)$ stable = $y \in \ell^2$ and x is bounded whenever $x_0 \in X$ and $u \in \ell^2(\mathbb{N}; U)$; i.e.,

$$\|x_n\|_{\mathbf{X}} + \|y\|_2 \le K(\|x_0\|_{\mathbf{X}} + \|u\|_2) \qquad (n \ge 0, \ x_0 \in \mathbf{X}, \ u \in \ell^2(\mathbb{N}; \mathbf{U})).$$
(8)

 $\begin{pmatrix} \underline{A} & | \underline{B} \\ C & | D \end{pmatrix}$ [output-]stabilizable = $\begin{pmatrix} \underline{A} + BF & | \underline{B} \\ C & | D \\ F & | I \end{pmatrix}$ [output-]stable for some F. $\begin{pmatrix} \underline{A} & | \underline{B} \\ C & | D \end{pmatrix}$ [input-]detectable = $\begin{pmatrix} \underline{A}^* & | C^* \\ \overline{B}^* & | D^* \end{pmatrix}$ [output-]stabilizable.

(iii) *P* has a stabilizable and detectable realization.

(iii') *P* has an output-stabilizable and input-detectable realization.

Theorem Output-stabilizability Finite Cost Condition. [M05a]

(iii'') *P* has a realization $\left(\frac{A \mid B}{C \mid D}\right)$ such that $\left(\frac{A \mid B}{C \mid D}\right)$ and $\left(\frac{A^* \mid C^*}{B^* \mid D^*}\right)$ satisfy the Finite Cost Condition.

MTNS06, 13th of December 2005

Main theorem (ver. 4)

The following are equivalent for a proper function P:

(i) *P* has a proper stabilizing controller *Q* (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathrm{H}^{\infty}$).

(i"') *P* has a realization that has a **stabilizing controller system**.

- (ii) P has a right coprime factorization $P = NM^{-1}$.
- (iii) *P* has a stabilizable and detectable realization.
- (iii') P has an output-stabilizable and input-detectable realization.
- (iii'') *P* has a realization $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ such that $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and $\begin{pmatrix} A^* & C^* \\ B^* & D^* \end{pmatrix}$ satisfy the Finite Cost Condition.

(iii''') *P* has a strongly stabilizable and strongly detectable realization. ("Strongly" means that, in addition, $x_k \rightarrow 0$, as $k \rightarrow +\infty$.)

Dynamic output-feedback stabilization

(i"') P has a realization that has a stabilizing controller system $\begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix}$.

This says that if we feed the output of $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ through $\begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix}$ back to the input, then the combined system becomes stable, i.e., in Figure 4

 $\|\begin{bmatrix} x_n\\ \tilde{x}_n\end{bmatrix}\|_{\mathbf{X}\times\tilde{\mathbf{X}}} + \|\begin{bmatrix} y\\ u\end{bmatrix}\|_2 \leq K\left(\left\|\begin{bmatrix} x_0\\ \tilde{x}_0\end{bmatrix}\right\|_{\mathbf{X}\times\tilde{\mathbf{X}}} + \|\begin{bmatrix} y_{\mathrm{in}}\\ u_{\mathrm{in}}\end{bmatrix}\|_2\right) \quad (n\geq 0, \ \begin{bmatrix} x_0\\ \tilde{x}_0\end{bmatrix}\in\mathbf{X}\times\tilde{\mathbf{X}}, \ \begin{bmatrix} y_{\mathrm{in}}\\ u_{\mathrm{in}}\end{bmatrix}\in\ell^2(\mathbb{N};\mathbf{Y}\times\mathbf{U})).$

Figure 4: Stabilizing controller system

This implies that $Q(z) = \tilde{D} + \tilde{C}(z^{-1} - \tilde{A})^{-1}\tilde{B}$ is a proper stabilizing controller for $P(z) = D + C(z^{-1} - A)^{-1}B$ (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathbf{H}^{\infty}$).

The converse holds iff $\left(\frac{A \mid B}{C \mid D}\right)$ and $\left(\frac{\tilde{A} \mid \tilde{B}}{\tilde{C} \mid \tilde{D}}\right)$ are stabilizable and detectable [M05e].

Main theorem (final version)

The following are equivalent for a proper function P:

- (i) *P* has a proper stabilizing controller *Q* (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathrm{H}^{\infty}$).
- (i") P has a stabilizing controller with internal loop. [CuWeWe01] [M05d]

(i''') *P* has a realization that has a **stabilizing controller system** $\left(\frac{\tilde{A}}{\tilde{C}} | \frac{\tilde{B}}{\tilde{D}}\right)$. [M05e] (ii) *P* has a **right coprime** factorization $P = NM^{-1}$. [Smith] [M05d] (ii'') *P* has a doubly coprime factorization $P = NM^{-1}$, $\begin{bmatrix} M & Y \\ N & X \end{bmatrix}$, $\begin{bmatrix} M & Y \\ N & X \end{bmatrix}^{-1} \in \operatorname{H}^{\infty}(U \times Y)$.

(iii) *P* has a stabilizable and detectable realization. [St98] [CO05] [M05c]

Proof of part of the Main Theorem

P has a stabilizing (dynamic) controller

Weaker equivalent conditions

- (i) *P* has a proper stabilizing controller *Q* (i.e., $\begin{bmatrix} I & -Q \\ -P & I \end{bmatrix}^{-1} \in \mathrm{H}^{\infty}$).
- (ii) P has a right coprime factorization $P = NM^{-1}$.
- (ii'') P has a doubly coprime factorization $P = NM^{-1}$, $\begin{bmatrix} M & Y \\ N & X \end{bmatrix}, \begin{bmatrix} M & Y \\ N & X \end{bmatrix}^{-1} \in H^{\infty}(U \times Y)$.
- (iii) P has a stabilizable and detectable realization.
- (iii') *P* has an output-stabilizable realization whose dual is output-stabilizable.

The following (strictly weaker) conditions equivalent to each other:

- (ii-) *P* has a factorization $P = NM^{-1}$ ($N, M \in H^{\infty}$).
- (ii'-) P has a weakly coprime factorization $P = NM^{-1}$. [M05a]
- (iii-) *P* has a **stabilizable realization**.
- (iii'-) P has an output-stabilizable realization. [M02]
- (i-) The range of the generalized Hankel operator of P lies in the range of the generalized Toeplitz operator of P plus H². [M05c]

Weakly coprime = common right factors are units

Scalar-valued case $(U = \mathbb{C} = Y)$: $N \in H^{\infty}(U, Y)$ and $M \in H^{\infty}(U, U)$ are weakly coprime iff gcd(N, M) = I.

Equivalent condition: if $N = N_1 V$ and $M = M_1 V$, then V is a unit $(V, V^{-1} \in H^{\infty})$. [Fuhrmann81] [Smith89]

Equivalent condition:

if $N = N_1 V$ and $M = M_1 V$ and V(0) is invertible, then V is a unit $(V, V^{-1} \in H^{\infty})$.

I.e., every properly-invertible common right factor is a unit.

This latter condition is meaningful also when U and Y are infinite-dimensional (the former is then never satisfied). An equivalent condition is

$$Nf, Mf \in \mathrm{H}^2 \Longrightarrow f \in \mathrm{H}^2$$
 (9)

(for every proper U-valued function f). Either of these two conditions can be used as the definition of weak right coprimeness.

One obtains a third equivalent condition by replacing H^2 by H^{∞} in (9).

Generalized Toeplitz and Hankel ranges

- (ii-) *P* has a factorization $P = NM^{-1}$ ($N, M \in H^{\infty}$).
- (ii'-) P has a weakly coprime factorization $P = NM^{-1}$.
- (iii-) *P* has a stabilizable realization.
- (i-) $\operatorname{Ran}(H_P) \subset \operatorname{Ran}(T_P) + \mathrm{H}^2$.

(i'-) $\exists r > 1 \ \forall v \in \ell^2_r(\mathbb{Z}_-; U) \ \exists u \in \ell^2(\mathbb{N}; U) \text{ such that } \mathscr{D}(v+u) \in \ell^2(\mathbb{N}; Y)$

 T_P is the "unbounded Toeplitz operator" that maps $\mathrm{H}^2 \ni \widehat{u} \mapsto P \widehat{u}$

 H_P is the "unbounded Hankel operator" that maps $H^2(r\mathbb{D}^-; U) \ni \widehat{v} \mapsto \text{projection of } P\widehat{v} \text{ onto } H^2_r := H^2(r\mathbb{D}; Y) \text{ (for some big } r).$

The I/O map \mathscr{D} is determined by $\widehat{\mathscr{D}u} = P\widehat{u}$. It has a unique continuous extension to a map $\mathscr{D}: \ell_r^2 \to \ell_r^2$ for every big r, where $\|u\|_{\ell_r^2}^2 := \sum_{k=-\infty}^{\infty} r^{2k} \|u_k\|_{U}^2$.

Note that
$$T_P \widehat{u} = \widehat{(\pi_+ \mathscr{D} \pi_+)}$$
 and $H_P \widehat{u} = \widehat{(\pi_+ \mathscr{D} \pi_-)}$,
where $(\pi_+ u)_k := \begin{cases} u_k, & k \ge 0; \\ 0, & k < 0 \end{cases}$, $\pi_- := I - \pi_+$. We have set $r \mathbb{D}^- := \{z \in \mathbb{C} \mid |z| > r\}$.

Naturally, $\|\widehat{u}\|_{\mathrm{H}^2_r}^2 := \|\widehat{u}(r \cdot)\|_{\mathrm{H}^2}^2 = \sup_{t < r} \int_0^{2\pi} \|\widehat{u}(t e^{i\theta})\|_{\mathrm{U}}^2 d\theta = 2\pi \|\widehat{u}\|_{\ell^2_r}^2.$

MTNS06, 13th of December 2005

References

Ruth F. Curtain, George Weiss and Martin Weiss. Stabilization of irrational transfer functions by controller with internal loop. 2001.

Ruth F. Curtain and Mark R. Opmeer. Normalized doubly coprime factorizations for infinite-dimensional linear systems, 2005.

Kalle M. Mikkola. Infinite-Dimensional Linear Systems, Optimal Control and Algebraic Riccati Equations. 2002. www.math.hut.fi/~kmikkola/research/thesis/

- —. State-feedback stabilization of well-posed linear systems. 2005.
- —. Hankel and Toeplitz operators on nonseparable Hilbert spaces, submitted, 2005.

—. Weakly coprime factorization and state-feedback stabilization of infinitedimensional systems, submitted, 2005.

—. Coprime factorization and dynamic stabilization of transfer functions, submitted, 2005.

—. Coprime factorization and stabilization of well-posed linear systems, submitted, 2005.

Alban Quadrat. On a general structure of the stabilizing controllers based on stable range. 2004.

Malcolm C. Smith. On stabilization and the existence of coprime factorizations,

1989.

Olof J. Staffans. Coprime factorizations and well-posed linear systems. 1998.

Sergei R. Treil. Angles between co-invariant subspaces, and the operator corona problem. The Szökefalvi-Nagy problem. 1989.

Sergei R. Treil. The stable rank of the algebra H^{∞} equals 1. 1992

Sergei R. Treil. An operator Corona theorem. 2004.

George Weiss and Richard Rebarber. Estimatable linear systems. ECC97, 1997.