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Main Theorem

The following are equivalent for a holomorphic function P:

(i) P has a dynamic stabilizing controller.

(ii) P has a right coprime factorization. [Smith89] [M05d]

(iii) P has a stabilizable and detectable realization. [Staffans98] [CurOpm05]
[M05c]

We work in discrete time, but essentially the same results hold in continuous time too.
Part of the results are new even in the scalar-valued case.

As corollaries, one obtains analogous results for exponential (power) stabilization.
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Notation

U,X,Y: complex Hilbert spaces of arbitrary dimensions.

D: the unit disc {z∈ C ∣∣ |z|< 1}.
B(U,Y): bounded linear maps U→ Y.

H∞(U,Y): the set of bounded holomorphic functions D→ B(U,Y).

I : the identity operator, e.g., I = IU ∈ B(U,U), or the corresponding constant
function, e.g., I = IU ∈H∞(U,U).

proper function = holomorphic (operator-valued) function defined near the origin;
strictly proper = P is proper and P(0) = 0;
stable = H∞ (a restriction of a H∞ function is identified with the H∞ function).

Motivation: P∈ H∞(U,Y) =⇒ P is bounded (stable) multiplication operator H2(U)→
H2(Y).
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Dynamic (output-feedback) stabilization

P

Q

{
u = uin +Qy
y = yin +Pu
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Figure 1: Controller Q for the transfer function P

stabilizing controller = [uin
yin ] 7→ [u

y ] is stable (H∞).

A proper B(Y,U)-valued function Q is called a (dynamic output feedback) proper
stabilizing controller for a proper B(U,Y)-valued function P if the “input-to-error”
map E : [uin

yin ] 7→ [u
y ] in Figure 1 is stable (E ∈H∞).The map E is obviously given by

E :=
[

I −Q
−P I

]−1

=
[

(I −QP)−1 Q(I −PQ)−1

P(I −QP)−1 (I −PQ)−1

]
. (1)

(Observe that then P is also a proper stabilizing controller for Q.)
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Right coprime

The following are equivalent for a proper holomorphic function P:

(i) P has a proper stabilizing controller Q (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

(ii) P has a right coprime factorization.

(iii) P has a stabilizable and detectable realization.

Two functions M,N ∈H∞ are called (Bézout) right coprime if [M
N ] is left-invertible in

H∞, i.e., if there exist X̃,Ỹ ∈H∞ satisfying the Bézout identity

X̃M−ỸN≡ I (on D) . (2)

We call the factorization P= NM−1 a right coprime factorization of P if N∈H∞(U,Y)
and M ∈H∞(U) are right coprime, M(0) is invertible and P = NM−1.

Then Q = X̃−1Ỹ is a stabilizing controller for P (if X̃−1 exists).
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All stabilizing controllers

Let P be B(U,Y)-valued and have a right coprime factorization P = NM−1. Then
[M

N ] ∈ H∞(U,U×Y) can be extended to an invertible element of H∞(U×Y), say [M Y
N X ].

(This is called a doubly coprime factorization of P.) [Tolokonnikov81] [Treil04]
[M05d]

All stabilizing controllers for P are given by the Youla(–Bongiorno) parameterization

Q = (Y +MV)(X +NV)−1 (3)

where V ∈ H∞(Y,U) is arbitrary (the controller is proper iff (X + NV)−1 is proper).
[CuWeWe01] [M05d]

If P is strictly proper (P(0) = 0), then all these controllers are proper.
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Matrix-valued case

Let P be a proper Cn×m-valued function. Then also the following are equivalent to the
existence of a proper stabilizing controller:

(i*) P has a stable (Q∈H∞(Cn,Cm)) stabilizing controller. [Treil92] [Quadrat04]

(ii*) P = NM−1, where N,M ∈ H∞, N∗N+M∗M ≥ εI on D, ε > 0 and detM 6≡ 0.
[Carleson62] [Fuhrman68]

(The corona condition in (ii’) is not sufficient for coprimeness in the operator-valued
case [Treil89]. It is not known whether (i’) is necessary in general.)
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Controllers with internal loop

Also the following is equivalent to the existence of a proper stabilizing controller of P:

(i”) P has a stabilizing controller with internal loop. [CuWeWe01] [M05d]

We call R a stabilizing controller with internal loop for P if R =
[R11 R12

R21 R22

]
is a

proper B(Y×Ξ,U×Ξ)-valued function for some Hilbert space Ξ and the combined

map
[uin

yin
ξin

]
7→

[u
y
ξ

]
in Figure 2 becomes stable (H∞).

P

R11 R12

R21 R22

y = yin +Pu[
u
ξ

]
=

[
uin
ξin

]
+R

[
y
ξ

]
f+ +

y
?

yin - ¾

- f+ +¾ uin

6
u

- f+ + ξin¾

ξ6

Figure 2: Controller R with internal loop for P

If I −R22(0) is invertible, then R corresponds to the proper stabilizing controller
Q = R11+R12(I −R22)−1R21.
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Main Theorem (ver. 3)

The following are equivalent for a proper function P:

(i) P has a proper stabilizing controller Q (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

(i’) P has a strictly proper stabilizing controller.

(i”) P has a stabilizing controller with internal loop.

(ii) P has a right coprime factorization P = NM−1.

(ii’) P has a left coprime factorization P = M̃−1Ñ.

(ii”) P has a doubly coprime factorization P = NM−1, [M Y
N X ] , [M Y

N X ]−1 ∈H∞(U×Y).

(iii) P has a stabilizable and detectable realization.
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Discrete-time system (A B
C D) ∈ B(X×U,X×Y)

Given input u∈ `2(N;U) and initial state x0 ∈ X, we associate the state trajectory
x : N→ X and output y : N→ Y through

{
xk+1 = Axk +Buk,

yk = Cxk +Duk,
k∈ N. (4)

The transfer function P(z) := D+C(z−1−A)−1B of
(

A B
C D

)
is proper.

We call
(

A B
C D

)
a realization of P.

The Z-transform û of u : N→ U is defined by û(z) := ∑nznun.

For x0 = 0, we have ŷ = Pû.
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State feedback uk = Fxk

State feedback means that we feed the state back to the input through some
state-feedback operator F ∈ B(X,U):

uk := Fxk +(uin)k (k∈ N), (5)

where uin denotes an exogenous input (or disturbation), as in Figure 3.

A B
C D
F 0

x·+1 = Ax+Bu
y = Cx+Du

?

x

¾ x·+1 6

τ−1

¾ y
¾ Fx t

?f
++-uin -u = Fx+uint

6

Figure 3: State-feedback connection

⇒ xk+1 = (A+BF)xk +B(uin)k ⇒
(

A+BF B
C D
F I

)
:
[ xk

(uin)k

] 7→
[ xk+1

yk
uk

]
.
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Closed-loop system




A+BF B[
C+DF

F

] [
D
I

]

 :

[
xk

(uin)k

]
7→




xk+1

yk

uk


 . (6)

The transfer function of the closed-loop system (6) is obviously given by

[
N(z)
M(z)

]
=

[
D
I

]
+

[
C+DF

F

]
(z−1−A−BF)−1B. (7)

Because [ N
M ] maps ûin 7→

[
ŷ
û

]
, a factorization of P : û 7→ ŷ is given by P = NM−1.

Finite Cost Condition (FCC): For each x0 ∈ X, some u∈ `2 makes y∈ `2.

If(f) the FCC holds, then there exists F ∈ B(X,U) that minimizes ∑∞
k=0(‖yk‖2

Y+‖uk‖2
U)

(LQR cost) for every x0.

The resulting factorization P = NM−1 is weakly coprime [M05a].
If the FCC holds for

(
A∗ C∗
B∗ D∗

)
, then P = NM−1 is right coprime [CO05].
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State-feedback stabilization of (A B
C D)

(
A B
C D

)
output stable = y∈ `2 whenever x0 ∈ X and u = 0;

i.e., ‖CA·x0‖2≤ K‖x0‖X (x0 ∈ X).
(

A B
C D

)
stable = y∈ `2 and x is bounded whenever x0 ∈ X and u∈ `2(N;U); i.e.,

‖xn‖X+‖y‖2≤ K (‖x0‖X+‖u‖2) (n≥ 0, x0 ∈ X, u∈ `2(N;U)). (8)

(
A B
C D

)
[output-]stabilizable =

(
A+BF B

C D
F I

)
[output-]stable for some F .

(
A B
C D

)
[input-]detectable =

(
A∗ C∗
B∗ D∗

)
[output-]stabilizable.

(iii) P has a stabilizable and detectable realization.

(iii’) P has an output-stabilizable and input-detectable realization.

Theorem Output-stabilizability⇔Finite Cost Condition. [M05a]

(iii”) P has a realization
(

A B
C D

)
such that

(
A B
C D

)
and

(
A∗ C∗
B∗ D∗

)
satisfy the Finite Cost

Condition.
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Main theorem (ver. 4)

The following are equivalent for a proper function P:

(i) P has a proper stabilizing controller Q (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

(i”’) P has a realization that has a stabilizing controller system.

(ii) P has a right coprime factorization P = NM−1.

(iii) P has a stabilizable and detectable realization.

(iii’) P has an output-stabilizable and input-detectable realization.

(iii”) P has a realization
(

A B
C D

)
such that

(
A B
C D

)
and

(
A∗ C∗
B∗ D∗

)
satisfy the Finite Cost

Condition.

(iii”’) P has a strongly stabilizable and strongly detectable realization.
(“Strongly” means that, in addition, xk→ 0, as k→+∞.)
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Dynamic output-feedback stabilization

(i”’) P has a realization that has a stabilizing controller system
(

Ã B̃
C̃ D̃

)
.

This says that if we feed the output of
(

A B
C D

)
through

(
Ã B̃
C̃ D̃

)
back to the input, then

the combined system becomes stable, i.e., in Figure 4

‖[ xn
x̃n ]‖X×~X+‖[ y

u]‖2≤K
(∥∥[ x0

x̃0

]∥∥
X×~X+‖[ yin

uin ]‖2

)
(n≥0,

[ x0
x̃0

]∈ X×~X, [ yin
uin ]∈ `2(N;Y×U)).

A B
C D

Ã B̃
C̃ D̃

e+ +

y
?

¾yin -

- e+ +¾ uin

6

ux0

6

x¾

x̃0
6

x̃
¾

Figure 4: Stabilizing controller system

This implies that Q(z) = D̃ + C̃(z−1− Ã)−1B̃ is a proper stabilizing controller for

P(z) = D+C(z−1−A)−1B (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

The converse holds iff
(

A B
C D

)
and

(
Ã B̃
C̃ D̃

)
are stabilizable and detectable [M05e].
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Main theorem (final version)

The following are equivalent for a proper function P:

(i) P has a proper stabilizing controller Q (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

(i”) P has a stabilizing controller with internal loop. [CuWeWe01] [M05d]

(i”’) P has a realization that has a stabilizing controller system
(

Ã B̃
C̃ D̃

)
. [M05e]

(ii) P has a right coprime factorization P = NM−1. [Smith] [M05d]

(ii”) P has a doubly coprime factorization P = NM−1, [M Y
N X ] , [M Y

N X ]−1 ∈H∞(U×Y).

(iii) P has a stabilizable and detectable realization. [St98] [CO05] [M05c]
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Proof of part of the Main Theorem

P has a stabilizing (dynamic) controller
KS

Mik05d

®¶

P has a dyn. stabilizable realization
KS

Mik02Mik05e
®¶

d.c.f.
KSTolokonnikov

Treil05
(Mik05b) ®¶

ks
Sta98

+3 jointly stab.&det. real.

trivial
®¶

r.c.f. or l.c.f.
KS

CWW01
®¶

stab.&det. real

trivial

®¶

Stab. canonical controller
trivial

®¶

Stab. contr. with internal loop

Mik02
®¶

[P 0
0 I ] has a d.c.f.

Mik05d

+3 FCC for a realization and dual

CO05
(Mik05c)

_g FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
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Weaker equivalent conditions

(i) P has a proper stabilizing controller Q (i.e.,
[

I −Q
−P I

]−1 ∈H∞).

(ii) P has a right coprime factorization P = NM−1.

(ii”) P has a doubly coprime factorization P = NM−1, [M Y
N X ] , [M Y

N X ]−1 ∈H∞(U×Y).

(iii) P has a stabilizable and detectable realization.

(iii’) P has an output-stabilizable realization whose dual is output-stabilizable.

The following (strictly weaker) conditions equivalent to each other:

(ii-) P has a factorization P = NM−1 (N,M ∈H∞).

(ii’-) P has a weakly coprime factorization P = NM−1. [M05a]

(iii-) P has a stabilizable realization.

(iii’-) P has an output-stabilizable realization. [M02]

(i-) The range of the generalized Hankel operator of P lies in the range of the
generalized Toeplitz operator of P plus H2. [M05c]
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Weakly coprime = common right factors are units

Scalar-valued case (U = C= Y):
N ∈H∞(U,Y) and M ∈H∞(U,U) are weakly coprime iff gcd(N,M) = I .

Equivalent condition: if N = N1V and M = M1V, then V is a unit (V,V−1 ∈ H∞).
[Fuhrmann81] [Smith89]

Equivalent condition:
if N = N1V and M = M1V and V(0) is invertible, then V is a unit (V,V−1 ∈H∞).

I.e., every properly-invertible common right factor is a unit.

This latter condition is meaningful also when U and Y are infinite-dimensional (the
former is then never satisfied). An equivalent condition is

N f,M f ∈H2 =⇒ f ∈H2 (9)

(for every proper U-valued function f ). Either of these two conditions can be used as
the definition of weak right coprimeness.

One obtains a third equivalent condition by replacing H2 by H∞ in (9).

MTNS06, 13th of December 2005 18



Generalized Toeplitz and Hankel ranges

(ii-) P has a factorization P = NM−1 (N,M ∈H∞).

(ii’-) P has a weakly coprime factorization P = NM−1.

(iii-) P has a stabilizable realization.

(i-) Ran(HP)⊂ Ran(TP)+H2.

(i’-) ∃r > 1 ∀v∈ `2
r (Z−;U) ∃u∈ `2(N;U) such that D(v+u) ∈ `2(N;Y)

TP is the “unbounded Toeplitz operator” that maps H2 3 û 7→ Pû

HP is the “unbounded Hankel operator” that maps
H2(rD−;U) 3 v̂ 7→ projection of Pv̂ onto H2

r := H2(rD;Y) (for some big r).

The I/O map D is determined by D̂u = Pû. It has a unique continuous extension to
a map D : `2

r → `2
r for every big r, where ‖u‖`2

r
2 := ∑∞

k=−∞ r2k‖uk‖2
U.

Note that TPû = (̂π+Dπ+) and HPû = (̂π+Dπ−),
where (π+u)k :=

{
uk, k≥ 0;

0, k < 0
, π− := I −π+. We have set rD− := {z∈ C ∣∣ |z|> r}.

Naturally, ‖û‖H2
r
2 := ‖û(r·)‖2

H2 = supt<r

R 2π
0 ‖û(teiθ)‖2

Udθ = 2π‖û‖2
`2
r
.
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