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Abstract. We compute the Bass stable rank and the topological stable rank of several
convolution Banach algebras of complex measures on (−∞,∞) or on [0,∞) consisting of a
discrete measure and/or of an absolutely continuous measure.

We also compute the stable ranks of the convolution algebras `1(Nn), `1(Zn), `1(S) and
`1(S ∩ R+), where S is an arbitrary subgroup of R, of the almost periodic algebra AP and
of AP∩H∞, etc. We answer affirmatively the question posed by R. Mortini in [20].

For the above algebras, the polydisc algebra A(Dn), the algebra C(Tn) of continuous func-
tions, and others, we also study their subsets (real Banach algebras) of real-valued measures,
real-valued sequences or real-symmetric functions, and of corresponding exponentially stable
algebras (for example, the Callier–Desoer algebra of causal exponentially decaying measures
and L1 functions), and we compute their stable ranks. Finally, we show that in some of these
real algebras a variant of the parity interlacing property is equivalent to reducibility of a uni-
modular (or coprime) pair. Also corona theorems are presented and the existence of coprime
fractions is studied; in particular, we list which of these algebras are Bézout domains.
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1. Introduction

The purpose of this article is to compute the Bass and topological stable ranks of various
real and complex Banach algebras of measures, functions and sequences. En route we answer
affirmatively the question posed by Raymond Mortini in [20], about the existence of a closed
subalgebra A of H∞ such that the maximal ideal ideal space X(A) of A contains D as a dense
subset, and such that the Bass stable rank of A is strictly greater than 1.

The notions of Bass stable rank and topological stable rank (often called “stable range”)
play important roles in algebraic and topological K-theories, respectively (see [3] and [23]),
but they also have important applications in other areas, such as in the control-theoretic
problem of the dynamic stabilization of fractional transfer functions (see [22] and [38]); this
is explained briefly in Subsection 10.1.

We recall the definitions of Bass stable rank and topological stable ranks below.

Definition 1.1. Let A be a ring1 with identity 1. Let n ∈ N. An element a ∈ An is called
unimodular (“a left-invertible vector”) if there exists b ∈ An (a left inverse) such that

b · a :=
n∑

k=1

bkak = 1.

We denote by Un(A) the set of unimodular elements of An. A unimodular n + 1-tuple
a ∈ Un+1(A) is called reducible (or stable) if there exists x ∈ An such that

(1) (a1 + x1an+1, . . . , an + xnan+1) ∈ Un(A).

The Bass stable rank (denoted by bsrA) of A is the least integer n ≥ 1 such that every
a ∈ Un+1(A) is reducible, and it is infinite if no such integer n exists.

Now let A denote a Banach algebra2. The topological stable rank (denoted by tsrA) of A
is the least integer n ≥ 1 such that Un(A) is dense in An, and it is infinite if no such integer
exists.

Recall also that elements of U2 are usually called (right) coprime. We have bsrA ≤ tsrA
for every Banach algebra A [23]. Our main results on stable ranks are summarized in Table
1, but also some other algebras will be treated. Most of the notation used in Table 1 is
introduced in Section 2 (particularly M∗∗, AP and AP+), but we explain some of it below.

By brc we denote the greatest integer ≤ r (r ∈ R).
By `1(R) we denote the Banach algebra of absolutely summable functions a : R → C

with ‖a‖1 :=
∑

r∈R |ar| and the convolution product defined by (a ∗ b)r :=
∑

t∈R atbr−t. Its
subalgebras `1(R+), `1(Z) and `1(N) have the same norm and the same product. Naturally,
a ∈ `1(R) implies that ar = 0 for all but countably many r ∈ R.

We use the symbol C(Tn) to denote the Banach algebra of complex-valued continuous
functions defined on Tn, where T = {z ∈ C : |z| = 1}, and we use the notation A(Dn) for the
Banach algebra of continuous functions Dn → C that are holomorphic on the polydisc Dn,
where D := {z ∈ C : |z| < 1}.

1By (A, +, ·) being a ring we mean that (A, +) is a group, (A, ·) is associative and unital, and a(b + c) =
ab + ac, (b + c)a = ba + ca ∀a, b, c ∈ A. An algebra is a ring.

2By a Banach algebra we mean a real or complex Banach algebra with a unit element 1. We do not assume
commutativity, but the algebras defined in this article happen to be commutative (except in the matrix-valued
case).
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Algebra A bsrA tsrA bsrAR tsrAR
Cδ0 + L1 1 1 1 1
Cδ0 + L1

+ 1 2 2 2
`1(Zn), M(n), M(n) + L1, C(Tn) bn/2c+ 1 bn/2c+ 1 bn/2c+ 1 bn/2c+ 1

`1(Nn), M(n+)
+ , M(n+)

+ + L1
+, A(Dn) bn/2c+ 1 n + 1 n + 1 n + 1

`1(R), M, M+ L1, AP ∞ ∞ ∞ ∞
`1(R+), M+, M+ + L1

+, AP+ ∞ ∞ ∞ ∞
Table 1. Stable ranks of algebras and their real-valued subalgebras

By M we mean the convolution Banach algebra of discrete (atomic) measures. It consists
of the sums

∑
r∈R arδr (with the total variation norm

∑
r∈R |ar|), where a ∈ `1(R) and δr ∈M

is the unit mass at r. Thus M is isometrically isomorphic to `1(R). The convolution Banach
algebras

(2) M+ := {µ ∈M : supp µ ⊂ [0,∞)},
M + L1 := M + L1(R) (denoted by LA(−∞,∞) in [15, §§4.20]) and M+ + L1

+ := M+ +
L1(R+) (denoted by L(1)+A(1) in [15, §§4.19]) have also been considered previously in the
literature, but we study their stable ranks here. We present these and some other subalgebras
of M+L1 in further detail in Section 2. These other subalgebras include the algebra M(1) of
measures with commensurate delays (for example, ar = 0 for r 6∈ Z) and the algebra M(n+)

+

(respectively, M(n)) generated by n independent (over Z) δr’s (respectively, δr’s and δ−r’s).
When A stands for some of such “M∗∗” algebras, then the notation AR in Table 1 represents

the subset of real-valued elements of A, which is a real Banach algebra. If A = `1(N), then
AR := `1(N;R) is the subset of A consisting of real-valued absolutely summable sequences
N→ R; similar notation is used when N is replaced by Z, R+ and R.

When A stands for C(Tn), A(Dn), AP or AP+ := AP∩H∞, then by

AR := {f ∈ A : ∀z, f(z) = f(z)}
we denote its subset of real-symmetric functions. The real Banach algebra A(Dn)R coincides
with the subset (of A(Dn)) of functions whose Taylor series at the origin have real coefficients.

One easily verifies that a complex Borel measure is real-valued iff its Laplace transform
is real-symmetric (on iR, hence wherever the transform converges absolutely) and that an
element of `1(Nn) or `1(Zn) is real-valued iff its Z-transform is real-symmetric (on Tn, hence
wherever the transform converges absolutely); further details are given in Section 2.

These real Banach algebras are often more important than the complex ones, because in
most physical applications the data is real and only real solutions are usable.

The facts that bsr `1(N) = 1 and bsr `1(Z) = tsr `1(Z) = 1 were already known (see
[29] and [10], respectively), and we have the isometries `1(Z) ≈ M(1) and `1(N) ≈ M(1+)

+ .
Also bsr C(Tn) = bn/2c + 1 and tsrC(Tn) = bn/2c + 1 were known; even better, the facts
that bsrC(X;C) = bn/2c + 1 and bsrC(X;R) = n + 1, where n := dim(X), were shown
in [37], and (if X is compact) tsrC(X;C) = bn/2c + 1 in [23]. (Note that, for example,
C(Tn)R 6= C(Tn;R).) It was also known that bsrA(Dn) = bn/2c+ 1 [8] (case n = 1 in [17]),
tsrA(Dn) = n + 1 [7], bsrA(D)R = tsrA(D)R = 2 [31], and bsr AP = tsr AP = ∞ [33]. The
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result bsr `1(Nn) = bn/2c + 1 will be based on [8], and the result bsrCδ0 + L1
+ = 1 will be

reduced to [29]. All other results in Table 1 seem to be completely new.
We note that bsrH∞ = 1 [36], and tsrH∞ = 2 [34]. Sergei Treil had conjectured that

bsrH∞
R = 2, and it has recently been proved by Raymond Mortini and Brett Wick that

bsrH∞
R = tsr H∞ = 2; see [21]. In Lemma 6.2 we construct, for any given n, an unimodular

vector in Un of FM+R ⊂ (AP+)R ⊂ H∞
R that is not reducible in AP.

The following is our main result.

Theorem 1.2. All results presented in Table 1 hold true (for any n = 1, 2, 3, . . .).

(The proof is given immediately after Corollary 7.9 below.)
Note, in particular, that bsrA = bsrAR = tsrA = tsrAR = 1 when A equals `1(Z),

Cδ0 + L1, M(1), M(1) + L1 or C(T), and that bsrA = 1 when A equals `1(N), Cδ0 + L1
+,

M(1+)
+ , M(1+)

+ + L1
+ or A(D). Also the corresponding exponentially stable subalgebras have

bsr = 1, as shown in Theorem 9.4. An example of these is

(3) `1,exp(N) := {a ∈ `1(N) :
∞∑

k=0

rk|ak| < ∞ for some r > 1},

and another one is M1,exp
+ = {∑∞

k=0 akδkT : a ∈ `1,exp(N)}. Such algebras have been popular
in control theory at least since the introduction of the Callier–Desoer algebra [4]. In §9 we
show that all results in Table 1 and many others hold for the corresponding exponential
algebras as well.

Unfortunately, the real variants (for example, `1(N;R) and Rδ0 +L1(R+;R)) of all “causal”
complex algebras mentioned in the above paragraph have bsr = 2. The reducible elements
of U2 of these real algebras are characterized by the parity interlacing property (§10). This
means that if (f, g) ∈ U2(A), then there exists h ∈ A such that f + hg is invertible iff f̂ has
the same sign at each real zero of ĝ. That this holds for A equal to F−1A(D)R was shown in
[41], but we show this, among others, for `1(N;R), Rδ0 +L1(R+;R) and for the corresponding
exponential subalgebras; see §10. In control theory this reducibility is equivalent to ĝ/f̂ being
stabilizable by a stable controller (one can use −ĥ) [38].

The article is organized as follows. The notation is presented in §2. In §3 we recall a few
results on general relations between stable ranks of Banach algebras. In §4 (and in §7) we
establish corona theorems and other results with necessary and/or sufficient conditions for
unimodularity in the algebras treated in this article.

The finite entries in Table 1, except those for algebras of the form M∗∗ + L1∗, are proved
in §5. There we also prove fairly general stable rank results for subalgebras of C(Dn) and
of C(Tn) and establish a powerful tool for constructing nonreducible unimodular continuous
functions.

In §6 we show that bsrA ≥ bn/2c + 1 whenever A is a subalgebra of M or of MR and
A contains (M(n))R. This implies all the bsr = tsr = ∞ results in Table 1 and answers the
question posed by R. Mortini in [20].

In §7 we treat algebras of the form M∗∗ + L1∗ including those listed in Table 1.
In §8 we study the stable ranks and coronas of `1(S) and of `1(S ∩ R+), where S is an

additive subgroup of R. Obviously, `1(S) is isomorphic to the algebra M(S) of discrete
measures on S. Naturally, also M(S) + L1(R) and MS∩R+ + L1(R+) are treated. As a
corollary of the above, we obtain results for the algebra `1(E) (isomorphic to M(n) ∩M+),
where E := {α ∈ Zn :

∑n
k=1 αkTk ≥ 0}; here n and the Q-independent T1, T2, . . . , Tn > 0 are
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arbitrary. Also APS and APS
+, the sup-norm-closures of FM(S) and FMS∩R+ , are studied.

For APS
+ and M(S)

+ , the corona theorems were given already in [24].
Stable ranks, unimodularity and other properties of “exponentially stable” measure, func-

tion or sequence algebras are studied in §9.
As mentioned below Theorem 1.2, the parity interlacing property and reducible coprime

pairs in many real algebras are treated in §10. In Subsection 10.1 we explain the control-
theoretic relevance of reducibility and stable ranks, in strong stabilization, simultaneous sta-
bilization etc.

In Subsection 10.2 we explain when a fraction g/f , where f, g ∈ A, f 6= 0, equals a coprime
fraction g̃/f̃ , where (f̃ , g̃) ∈ U2(A); in particular, we observe which of the algebras treated in
this article are Bézout domains. Analogous results hold for matrix-valued functions too.

When treating a complex algebra we always treat also the corresponding real algebra of
real-valued measures or sequences (or of real-symmetric functions (transformations)).

Acknowledgement: The authors would like to thank Raymond Mortini for giving us a proof
of Lemma 3.9.(1).

2. Notation

In this section we present most of our notation and terminology (including C(A; B), L1,
`1, I, M∗∗, ∗, F , AP, AP+ and “causal”). See

§1 for Un, b · a, bsr, tsr, bn/2c ≤ n/2, `1, ∗, C(Tn), A(Dn), ·R (including AR, (AP)R,
L1(R+)R = L1(R+;R) etc.), “ring”, “unimodular”, “reducible”, “real-symmetric” and
“coprime”;

§3 for “algebra”, “subalgebra”, “topological algebra”, “morphism”, “full”, and “ideal”;
§4 for “maximal ideal space”=”X(A)”, “corona”, and “symmetrization”;
§5 for B̄r(a), “(topological) function algebra”, and “Cayley transform”.
§8 for M(S), M(S)

+ , M(n)
+ , APS , APS

+ etc. and dimQ S;
§9 for Aexp, (M+ L1)exp, `1,exp etc.

Note: we do not distinguish between row and column vectors.
Here we define some symbols.

N, Z, Q N := {0, 1, 2, . . . }, Z := {. . . ,−2,−1, 0, 1, 2, . . .}, Q = {rational numbers},
K either K = C or K = R,

R+ [0,∞),

T, D, C+ T := {z ∈ C : |z| = 1}, D := {z ∈ C : |z| < 1}, C+ := {z ∈ C : Re z > 0}.
M∗∗ some of the various measure algebras defined below.

F , ̂ the Laplace/Fourier or Z-transform (see later below).

δa the unit mass at a (when a ∈ R). Note that (δa ∗ f)(t) = f(t− a).

mk the k-dimensional Lebesgue measure m.

zk the kth coordinate of z if, for example, z ∈ Dn (then zα := zα1
1 zα2

2 · · · zαn
n for

every α ∈ Zn, and etz := (etz1 , etz2 , . . . , etzn) ∈ Cn for every t ∈ R, etc.).

Tk We assume that T1, T2, T3, . . . ∈ (0,∞) are fixed and linearly independent over
Q (or equivalently, over Z).
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T T := (T1, T2, . . . , Tn) for some n. Sometimes T = T1 > 0 (when n = 1).
We use the notation C(A; B) for the set of continuous functions A → B; and C(A) := C(A;C).
Analogously, L1(A) := L1(A;C), `1(A) := `1(A;C). By n and k we denote arbitrary elements
of {1, 2, 3, . . .} unless otherwise specified. By 1 we denote the unit element of an algebra and by
I := diag(1, 1, . . . , 1) the identity matrix. A polynomial means a (real or complex, depending
on the context) linear combination of the functions zn (n ∈ N) or a k-tuple (p1, p2, . . . , pk) of
such polynomials (for any k = 1, 2, . . .).

We will consider the following Banach algebras with the operations of addition and convo-
lution (with δ0 as the unit element):
M discrete (or atomic) measures on R,

f =
∑

n∈Z anδtn , a = (an)n∈Z ∈ `1(Z), · · · < t−1 < 0 = t0 < t1 < . . . .

M+ causal discrete measures,
f =

∑
n∈N anδtn , a ∈ `1(N), 0 = t0 < t1 < t2 < . . . .

Cδ0 + L1 absolutely continuous measures with identity,
f = fa + aδ0, a ∈ C, fa ∈ L1(R).

Cδ0 + L1
+ causal absolutely continuous with identity

f = fa + aδ0, a ∈ C, fa ∈ L1(R+).

M+ L1 measures without continuous singular part
f = fa +

∑
n∈Z anδtn , fa ∈ L1(R), a ∈ `1(Z), · · · < t−1 < 0 = t0 < t1 < . . . .

M + L1 is equipped with the norm ‖f‖ := ‖fa‖L1(R) + ‖a‖`1(Z). The same norm is used for
each of the above algebras and for the ones to follow. They are all closed subalgebras of
M+ L1.
M+ + L1

+ causal measures without continuous singular part
f = fa +

∑
n∈N anδtn , fa ∈ L1(R+), a ∈ `1(N), 0 = t0 < t1 < t2 < . . . .

In the following, let T > 0.
M(1) periodic discrete measures,

f =
∑

n∈Z anδnT , a ∈ `1(Z).

M(1+)
+ causal periodic discrete measures,

f =
∑

n∈N anδnT , a ∈ `1(N).

M(1) + L1 absolutely continuous plus periodic discrete measures,
f = fa +

∑
n∈Z anδnT , fa ∈ L1(R), a ∈ `1(Z), · · · < 0 = t0 < t1 < . . . .

M(1+)
+ + L1

+ the causal elements of M(1) + L1,
f = fa +

∑
n∈N anδnT , fa ∈ L1(R+), a ∈ `1(N), 0 = t0 < t1 < t2 < . . . .

M(n),M(n+)
+ see below Remark 2.1.

An The set of n-tuples (a1, a2, . . . , an) of the elements of A, respectively. Naturally,
Mn is an example of this.

If M∗∗ denotes one of the classes above, then by FM∗
∗ we denote the set of Laplace transforms

of elements of M∗∗, where

(Ff)(s) := f̂(s) :=
∫

R
e−stf(t) dt.
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With the operations of pointwise addition and multiplication, and equipped with the same
(coinduced) norm as M∗∗, the set FM∗

∗ becomes a Banach algebra that is isometrically iso-
morphic to M∗∗; in particular, the stable ranks are the same. We recall that F(f ∗ g) = f̂ ĝ
for all f, g ∈M+ L1 and that Fδr = e−r· (r ∈ R).

For `1(Z) or `1(N) the symbol F stands for the Z-transform:

(Fa)(z) := â(z) :=
∑

k

akz
k.

Similarly, if a ∈ `1(Zn) (respectively, `1(Nn)), then

â(z1, . . . , zn) :=
∑

(k1,...,kn)∈Zn

akz
k1
1 zk2

2 · · · zkn
n .

Observe that also here F(a ∗ b) = â b̂ on Tn (respectively, on Dn), where

(a ∗ b)k :=
∑

j∈Zn

ajbk−j (k ∈ Zn).

For A equal to M+ L1 (respectively, M+ + L1
+, `1(Zn), `1(Nn)) and f ∈ A, the function

f̂ is uniformly continuous on iR (respectively, C+, Tn, Dn) and sup |f̂ | ≤ ‖f‖A.
We identify F : A → FA with the corresponding function F : An → (FA)n (analogously

for other operations and sets).

Remark 2.1. The algebras `1(N), `1(Z), `1(R+) and `1(R) are isometrically isomorphic (as
Banach algebras) to M(1+)

+ , M(1), M+ and M, respectively. Similarly, `1(Zn) ≈ M(n) and

`1(Nn) ≈M(n+)
+ , as explained below. Analogous claims hold for the corresponding real-valued

subsets (real Banach algebras): `1(N;R) ≈ (M(1+)
+ )R, etc.

In the above isometries a ∈ `1(R) (or a ∈ `1(R+)) is identified with
∑

r∈R arδr ∈ M but
a ∈ `1(Z) (or a ∈ `1(N)) with

∑
n∈Z anδnT ∈M(1).

Next we explain how the Banach algebras `1(Nn) and `1(Zn) are isometrically isomorphic
to the algebras M(n+)

+ and M(n) of n noncommensurate delays.
Let n ∈ {1, 2, 3, . . .}. Let T1, T2, T3, . . . > 0 be linearly independent over Q. Then the

smallest closed subalgebra M(n+)
+ of M containing δT1 , δT2 , . . . , δTn is obviously isometrically

isomorphic to `1(Nn) through

(4) `1(Nn) 3 a 7→
∑

α∈Nn

aαδα
T ,

where δα
T := δα1

T1
δα2
T2
· · · δαn

Tn
= δα1T1+α2T2+···+αnTn = δα·T . Similarly, the smallest closed subal-

gebra M(n) of M containing δ±T1 , δ±T2 , . . . , δ±Tn is isometrically isomorphic to `1(Zn).
By AP (respectively, AP+) we denote the closure of FM (respectively, FM+) with respect

to the supremum norm on the imaginary axis iR. Note that AP is the algebra of almost
periodic functions iR→ C and that AP+ := AP∩H∞ consists of those elements that have a
holomorphic extension to {z ∈ C : Re z ≥ 0}.

A measure is called causal if its support lies on R+. An element of `1(Zn) is called causal
if its support lies on Nn. In these cases causality is obviously equivalent to the Laplace
(respectively, Z-) transformation being holomorphic and bounded on C+ (respectively, on
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D). Therefore, we often call also A(Dn) and AP+ (and `1(Nn), `1(R+), M+ etc.) causal
algebras and C(Tn) and AP (and `1(Zn), `1(R), M etc.) noncausal algebras.

If a ∈ An and b ∈ A, then we often write (a, b) := (a1, . . . , an, b) ∈ An+1. Thus, the
condition bsrA ≤ n can be rewritten as “if (a, b) ∈ Un+1(A) and b ∈ A, then there exists
x ∈ An such that a + xb ∈ Un(A)” (by Lemma 3.1).

3. Preliminaries on stable ranks

We assume that every algebra (a real/complex vector space with a bilinear multiplication) is
associative, and has a unit. We say that A ⊂ A′ is a subalgebra of A′ if A and A′ are algebras
(with same operations and scalar field) and have the same unit. A topological algebra means a
topological vector space which is an algebra and where also the multiplication is continuous.
Obviously, also the definition of tsr is meaningful for any topological algebra. A Banach
algebra A is an algebra that is also a Banach space and satisfies ‖ab‖ ≤ ‖a‖‖b‖ (a, b ∈ A).
An algebra morphism means a linear, multiplicative (f(ab) = f(a)f(b)) mapping.

We sometimes use without further mention the following lemma [37, Theorem 1] [23, p. 303].
It says that if either stable rank condition holds for some n, then it holds for every bigger n
too.

Lemma 3.1. Let A be a Banach algebra. If every a ∈ Un+1(A) is reducible, then so is every
a ∈ Un+2(A). If Un(A) is dense in An, then Un+1(A) is dense in An+1.

We recall the following from [23].

Proposition 3.2. For every Banach algebra A we have tsrA ≥ bsrA.

(If A is noncommutative, then one can define left and right tsr’s and bsr’s, but Proposition
3.2 holds for any of them.)

Many of our tsr results are constructive, and we sketch simpler constructive proofs for some
special cases in the notes to §5. We remark that they all lead to constructive bsr results.

Remark 3.3. If f, g, x, y ∈ A are such that xf + yg = 1, and tsrA = 1, then there exists
w ∈ U1(A) so close to x that wf + yg ∈ U1(A), that is, that f + hg ∈ U1(A), where
h := w−1y ∈ A. So any constructive tsrA = 1 result is also a constructive bsrA = 1 result.
Analogously, any constructive tsrA = n result is also a constructive bsrA = n result, as one
observes from the proof (in [23] or in [6]) of Proposition 3.2.

Note also that the tsr and bsr results are robust to small errors (in, e.g., f , g, x, y, w and
h) in the sense described in Subsection 10.1.

In [8, p. 545] it is conjectured that tsrA ≤ 2 bsrA for every complex Banach algebra.

Lemma 3.4. If A is a Banach algebra, then Un(A) is open.

Proof. Let f ∈ Un(A) and g · f = 1 for some g ∈ An. If h ∈ An is sufficiently close to f , then
g · h is invertible and hence h ∈ Un(A), because (g · h)−1g · h = 1. ¤

If A is a subalgebra of a unital algebra A′ and every A′-invertible a ∈ A has a−1 ∈ A, then
A is called full. An equivalent condition is that U1(A) = A ∩U1(A′).
Lemma 3.5. If A is a dense and full subalgebra of a Banach algebra A′, then An∩Un(A′) =
Un(A) (n ∈ {1, 2, 3, . . .}).
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Proof. If f ∈ Un(A), then f ∈ A∩Un(A′), so assume that f ∈ A∩Un(A′) and hence g ·f = 1
for some g ∈ (A′)n. Pick h ∈ An so close to g that h · f is invertible (in A′, hence in A).
Then (h · f)−1h ∈ A and (h · f)−1h · f = 1, hence f ∈ Un(A). ¤

The following is a special case of [35, Theorem 2.2].

Lemma 3.6. If A is a dense and full subalgebra of a Banach algebra A′, then bsrA ≤ bsrA′.
(The fullness assumption can be weakened. Moreover, if A′ is complex and commutative,

then bsrA′ ≤ bsrA+ 2, by [8, Corollary 3.18]. Swan’s open problem asks if bsrA′ = bsrA.)
We quote the following from Badea [2, Proposition 4.12] (its proof applies in the real case

as well).

Proposition 3.7. Let A and A′ be topological algebras and let f : A → A′ be a continuous
algebra morphism with a dense image. Then tsrA ≥ tsrA′.
Corollary 3.8. Let A be a topological algebra and let A′ be a Banach algebra. If f : A → A′
is a continuous injective algebra morphism with dense and full image f [A] ⊂ A′, then tsrA ≥
tsrA′ ≥ bsrA′ ≥ bsrA; if, in addition, f−1 is continuous, then tsrA = tsrA′.

(Much of this is given in [6, Theorem 3 and Corollary 3] and also the other results are
known at least to some extent. Many of the claims actually hold for fairly general topological
rings too.)

Proof. The chain of inequalities follows from Lemma 3.6 and Propositions 3.7 and 3.2. Assume
then that n := tsrA′ < ∞, a ∈ f [An] and ε > 0. Pick a′ ∈ Un(A′) with ‖a − a′‖ < ε/2 and
then b ∈ f [A]n such that ‖a′ − b‖ < ε/2 is so small that b ∈ Un(A′). By Lemma 3.5,
b ∈ Un(f(A)] = f [Un(A)], so tsr f [A] ≤ n. If f−1 is continuous, then tsrA = tsr f [A]. ¤

Note that M+ L1 and its subalgebras are complex and commutative. We also have

M∗ L1(R) ⊂ L1(R) and M+ ∗ L1(R+) ⊂ L1(R+)

(these facts will be used without further mention). In fact L1(R) is an closed 2-sided ideal of
M + L1(R). Recall that a subgroup (J,+) is a 2-sided ideal of a ring R if JR = RJ = J .
Since the quotient algebra (M+L1)/L1 is isometrically isomorphic to Cδ0 +L1, the following
lemma says that, for example, bsr(M+ L1) ≥ bsr(Cδ0 + L1).

Lemma 3.9. Let A be a commutative K-Banach algebra and let J be an ideal of A with
KJ ⊂ J .

(1) We have bsrA ≥ max{bsrA/J,bsr(K1 + J)}.
(2) If J is closed, then tsrA ≥ tsrA/J .

Proof. (1) The inequality bsrA ≥ bsrA/J is from [37, Theorem 4]. The inequality
bsrA ≥ bsr(K1 + J) was proved by Raymond Mortini, and we include his proof
here:

To this end, suppose that A has the stable rank n. We want to show that K1 + J
has stable rank less than or equal to n. Let (f1, · · · , fn, h) be an invertible tuple in
K1 + J . Consider the following two possible cases:

1◦ If fj0 = a + F for some F ∈ J and a ∈ K, a 6= 0, then I := (f1, · · · , fn, Fh) is
also an invertible tuple in K1 + J . In fact, suppose that the ideal I is contained
in a maximal ideal M of K1 + J . Since M is prime, either F or h is in M . But,
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by our hypothesis, h can’t be in M ; so F is in M . But then a = fj0 − F ∈ M ; a
contradiction.
Since A has the stable rank n, there exist xj ∈ A such that (f1 +x1Fh, · · · , fn +
xnFh) is an invertible tuple in An. But xjF ∈ J ⊂ K1 + J ; hence the tuple
(f1, · · · , fn, h) is reducible in K1 + J .

2◦ If all the fj are in J , then necessarily h 6∈ J . Hence (f1 + h, f2, · · · , fn, h) is
an invertible tuple in (K1 + J)n+1. Note that f1 + h /∈ J ; so we have the
situation of the first case (for j0 = 1). Thus there are yj ∈ K1 + J such that
(f1 + h + y1h, f2 + y2h, · · · , fn + ynh) = (f1 + (y1 + 1)h, f2 + y2h, · · · , fn + ynh)
is an invertible tuple in (K1 + J)n. Hence (f1, · · · , fn, h) is reducible in K1 + J .

This completes the proof.
(2) This is proved in [23, Theorem 4.3].

¤

Next we observe that if (a, b) ∈ U2, then (a + cb, b) ∈ U2, and if (a + cb, b) is reducible,
then so is (a, b).

Lemma 3.10. Let A be a ring. Let a ∈ An and b ∈ A be “coprime”, that is, (a, b) ∈ Un+1(A).
Let c ∈ An and w ∈ U1(A). Then (a + cb, b) ∈ Un+1 and (wa, b) ∈ Un+1. If (w−1(a + cb), b)
is reducible, then so is (a, b).

(Above w and w−1 are interchangeable if A is commutative.)

Proof. If x · a + y · b = 1, then x · (a + cb) + (y − x · c)b = 1 and xw−1 · (wa) + y · b = 1. If
w−1(a + cb) + hb ∈ Un, then Un 3 (a + cb) + whb = a + (c + wh)b. ¤

4. Unimodularity in our algebras

In this section we present corona theorems and other results on unimodularity. Further
similar results are presented in §7.

First we note that a unimodular measure in some M∗∗ algebra has a unimodular discrete
part.

Lemma 4.1. Let A be equal to M+ L1 or M+ + L1
+. If µ + f ∈ Un(A) (with f ∈ (L1)n and

µ ∈Mn), then µ ∈ Un(A).

Proof. Assume that 1 = (ν + g) ∗ (µ + f) = ν ∗ µ + h (where a ∗ b :=
∑n

k=1 ak ∗ bk), where
h := ν ∗ f + g ∗ µ + f ∗ g ∈ L1, hence h = 0 and ν ∗ µ = 1. ¤

In the above proof we showed that the discrete part ν of the inverse of µ+f is a left inverse
of µ. In Lemma 7.1 we shall establish the nontrivial converse: if ν is any left inverse of µ,
then there exists g ∈ L1 such that ν + g is a left inverse of µ + f .

If A is complex and commutative, then by X(A) we denote the maximal ideal space of
A, that is, the set of nonzero homomorphisms A → C with weak∗ topology. Recall that
X(A) ⊂ A∗ and that ‖Λ‖ = 1 for every Λ ∈ X(A) [27].

It is well known that f ∈ An is in Un(A) iff Λf 6= 0 ∀Λ ∈ X(A), that is, iff ε :=
infΛ∈X(A) |Λf | > 0. For the latter condition, X(A) can obviously be replaced by a dense
subset. We state here also the converse (which is essentially proved on [11, pp. 202–203]).

Lemma 4.2 (X(A)). Assume that A is a complex commutative Banach algebra. Let X0 ⊂
X(A). Then the following are equivalent.
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(i) X0 is dense in X(A).
(ii) Given any n ≥ 1 and f ∈ A, we have f ∈ Un(A) iff there exists ε > 0 such that

|Λf1|+ · · ·+ |Λfn| ≥ ε for every Λ ∈ X0.

The set X(A) \X0 is called the “corona” of the maximal ideal space. A “corona theorem”
states that the corona is empty, that is, it is a special case of Lemma 4.2. In Theorem 4.3
below we present below corona theorems (or dense subsets of maximal ideal spaces) for most
algebras used in this article.

This theorem shows that the point evaluations of the Fourier or Z-transform of a measure
or `1 function, respectively, form a dense subset of the maximal ideal case in the cases treated
in (a) and the whole maximal ideal space in (b).

Theorem 4.3 (Corona Theorem). Let n, k ∈ {1, 2, · · · }.
(a1) Let A be any one of M + L1, M(1) + L1, M, M(1), Cδ0 + L1 and F−1 AP. Then

f ∈ FAn is unimodular (f ∈ Un(FA)) iff there exists ε > 0 such that |f(z)| ≥ ε for
every z ∈ iR.

(a2) Part (a1) above also holds if we replace A by A+ (respectively, by M(n)) and iR by
C+ (respectively, by iR).

(b) Let A stand for the algebra M(1) (respectively, M(1+)
+ , Cδ0 + L1, Cδ0 + L1

+, `1(Zk),
`1(Nk), C(Tk), A(Dk)). Then f ∈ FAn is unimodular iff f(z) 6= 0 for every z in
iR ∪ {∞} (respectively, C+ ∪ {∞}, iR ∪ {∞}, C+ ∪ {∞}, Tk, Dk, Tk, Dk).

(Here | · | denotes any norm on Cn, and “f(z) 6= 0” means that “f(z) 6= (0, 0, . . . , 0)”.
Naturally, by (M + L1)+ we refer to M+ + L1

+, etc. We have M(n) in (a2), because M(n)
+

will not be defined before §8.)

Proof. We first prove (b):
1◦ The maximal ideal spaces of Cδ0 + L1, Cδ0 + L1

+, `1(Zk), `1(Nk), C(Tn) and A(Dn)
equal the sets mentioned in (b), by [13, pp. 107 and 112] and [27, p. 271] (or [38,
pp. 338–339]). This proves (b) for those classes, by Lemma 4.2.

2◦ The algebras M(1) and M(1+)
+ : We reduce these to `1(Z) and to `1(N), respectively.

We have ĝ(s) :=
∑

n an exp(−nTs) =
∑

n anzn = â(z), where z = exp(−Ts); this
mapping g 7→ a ∈ `1 is an isometric isomorphism. If the components of f are of
this form, say f̂k(s) = b̂k(z) for k = 1, . . . , n, then we have |f̂(s)| = |̂b(z)| (for any
s with z := exp(−Ts)), so then |f̂ | ≥ ε on iR (respectively, on C+) iff |̂b| ≥ ε on T
(respectively, on D). By 1◦, an equivalent condition is that b ∈ Un(`1(Z)) (respectively,
b ∈ Un(`1(N))), which in turn holds iff f ∈ Un(M(1)) (respectively, f ∈ Un(M(1+)

+ )),
by the isomorphism.

(a) For the classes mentioned in (b) the equivalence follows by continuity and compactness.
For the others it suffices to show that iR (respectively, C+) is dense in the maximal ideal
space of A (respectively, of A+), by Lemma 4.2.

1◦ The algebras M+L1, M+ +L1
+, M+, AP, AP+: The proofs for density can be found

from the following references: M + L1 in [15, Theorem 4.20.4], M+ + L1
+ in [38, p.

342], AP in [12], and AP+ and M+ in [24].
2◦ The algebra M: If f ∈ F(M)n satisfies |f | ≥ ε > 0 on iR, then g · f = 1 for some

g ∈ F(M+ L1). Obviously, the discrete part of g is a left inverse of f .
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3◦ The algebras M(1) + L1 and M(1+)
+ + L1

+: From Lemma 4.1 and Proposition 8.2
(whose proof is self-contained) we conclude that if µ, ν ∈ Mn, f, g ∈ L1(R)n and
(ν + g) · (µ + f) = δ0, then (νS + g) · (µ + f) = δ0 (where S = Z). Thus, the result
for M(1) + L1 follows from that for M+ L1. Analogously, the result for M(1+)

+ + L1
+

follows from that for M+ + L1
+.

4◦ The algebra M(n): The proof is similar to 3◦ above.
(Part of our proofs are from [19, Theorem 4.1.6], which contains further results.) ¤

For further algebras of the form A ⊂M or A+L1∗, corona theorems are given in Lemma 7.3
and in Corollary 7.4. (For A equal to M(S), M(S)

+ or M(n)
+ , see Proposition 8.2, where also

`1(S) and `1(S ∩ R+) are covered.) Theorem 4.5 (respectively, 9.3) is the analogous corona
theorem for real-valued (respectively, for “exponentially stable”) measures or sequences. For
APS ⊂ AP and APS

+ ⊂ AP+, corona theorems are given in Corollary 8.3. For `1(R), `1(R+)

or M(n+)
+ , use Remark 2.1.

We note that if A ⊂M+ L1, then AR equals the subset of real-valued elements of A (the
elements fa +

∑
n anδtn ∈ A for which fa is real-valued and an ∈ R ∀n). Equivalently, then

AR = {µ ∈ A : µ̂(z) = µ̂(z) ∀z} = A ∩ (M+ L1)R.
The elements of these and our other algebras can be made real-valued or real-symmetric

by symmetrization.

Lemma 4.4 (symmetrization). If µ ∈M+L1, then Re µ = (µ+µ̄)/2 ∈ (M+L1)R. Moreover,
ˆ̄µ(s) = µ̂(s̄) for all s ∈ iR (in fact for all s ∈ C+ if µ ∈M+ + L1

+).
Let A stand for any of the algebras mentioned in Theorem 4.3. If f ∈ FA, then fR :=

(f + f (̄·))/2 ∈ FAR, and ‖fR‖∞ ≤ ‖f‖∞. If f, g ∈ FAn, g · f = 1 and f ∈ FAn
R, then

gR ∈ FAn
R and gR · f = 1.

Proof. Most of this is obvious. For the last claim, set gc(z) := g(z), gR := (g + gc)/2. Then
fc = f = fR, hence

gR · f =
g + gc

2
· f =

g · f + gc · fc

2
=

1 + 1c

2
= 1.

¤
This makes it easy to extend Theorem 4.3 to the real algebras.

Theorem 4.5 (Real Corona Theorem). Theorem 4.3 holds even if we replace A by AR (in
the “iff” claims). Thus Un(AR) = An

R ∩Un(A).

Proof. By the last claim of Lemma 4.4, we have An
R ∩ Un(A) ⊂ Un(AR). The converse is

trivial. The former claim of Theorem 4.5 follows from the latter and Theorem 4.3. ¤

5. Finitely many generators: M(n), `1(Nn), A(Dn), C(Tn), . . .

In this section we studyM(n+)
+ , `1(Zn), A(Dn), C(Tn) and other finitely generated algebras

(and the corresponding real algebras). In the technical Subsection 5.1 we construct some
examples of nonreducible elements of Un. In Subsection 5.2 we compute the stable ranks of
many algebras, partially based on the examples in Subsection 5.1.

For the causal real algebras studied here we have bsr ≥ 2. However, in many of them a
(coprime) pair (f, g) ∈ U2 is reducible iff it has the “parity interlacing property”, as we shall
see in §10.
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5.1. Nonreducible unimodular vectors. In this subsection we present examples that will
be used to prove most of our results of the form “bsr ≥”. We start with an auxiliary result
followed by a powerful tool for constructing nonreducible functions.

In the following lemma we observe that the identity function on a nice set E ⊂ Rn can be
continuously extended to Rn so that its values remain in Ē.

Lemma 5.1. Let E ⊂ Rn be convex, open and bounded. Then there exists b ∈ C(Rn; Ē) such
that b(x) = x (x ∈ E).

Proof. Without loss of generality, we can assume that 0 ∈ E. By [16, p. 82], the Minkowski
functional N(x) := inf{t > 0: x/t ∈ E} is a norm on Rn. Because every norm on Rn is
continuous, the function b′(x) := x/N(x) is a continuous function Rn \ {0} → ∂E; obviously,
b′(x) ∈ ∂E (x ∈ Rn \ {0}). It is a simple exercise to show that b′(x) = x (x ∈ ∂E). Let
b(x) = x for x ∈ E and b(x) := b′(x) elsewhere. ¤

A standard tool in many stable rank proofs in the literature is Brouwer’s fixed point
principle [28] or the stability of the origin for the identity mapping on Rn [37]. We now
formulate this method explicitly and extend it by allowing the “boundary function” F below
to be nonzero. Recall that K = R or K = C, and that E◦ denotes the interior of E.

Lemma 5.2. Let E ⊂ Kn be compact, fj , g ∈ C(E;K) (j ≤ n) and g(x) = 0 (x ∈ ∂E).
Set f = (f1, . . . , fn). If the function F (x) := x − f(x) (x ∈ ∂E) has an extension F ∈
C(Kn \ E◦; E), then for every h ∈ C(E;Kn) there exists x ∈ E such that (f + gh)(x) = 0.

For this continuous extendibility of F , a sufficient condition is obviously that F |∂E is a
constant that belongs to E. A necessary condition is that F [∂E] ⊂ E; this condition is also
sufficient if there exists a retraction b : Kn \ E◦ → ∂E (this means that b is continuous and
b(x) = x for every x ∈ ∂E).

By Lemma 5.1, the retraction exists if E is the closure of a convex, open and bounded set.

Proof. Define

(5) G(x) :=

{
x− f(x)− g(x)h(x), if x ∈ E;
F (x), if x 6∈ E

.

Since g = 0 on ∂E, we have F = G on ∂E, and so G ∈ C(Kn;Kn). G is bounded since E
is compact. By Brouwer’s fixed point theorem (Lemma A.3), there exists x ∈ Kn such that
G(x) = x. But if x 6∈ E, then x = G(x) = F (x) ∈ E, a contradiction. So we must have
x ∈ E. Consequently, x = G(x) = x− (f + gh)(x), that is, (f + gh)(x) = 0.

The second paragraph is straightforward (for example, F ◦ b is an extension of F if b is a
retraction). ¤

If a ∈ Rn, then B̄r(a) := {x ∈ Rn : |x− a| ≤ r} ⊂ Rn ⊂ Cn. We now give a “unimodular”
real-coefficient polynomial (f, g) : Cn → Cn+1 that is not reducible in any subalgebra of
C(Dn)R.

Corollary 5.3. Let 0 6= n ∈ N, a ∈ Rn and r > 0. Define the real-coefficient polynomials
g, fj ∈ C(Cn;C)R by

(6) g(z) := r2 −
n∑

j=1

(zj − aj)2, fj(z) := zj − aj (j = 1, . . . , n, z ∈ Cn).
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If h ∈ C(B̄r(a);Rn), then (f + gh)(x) = 0 for some x ∈ B̄r(a). Moreover, (f, g) : Cn → Cn+1

has no zeros and f1f1 + f2f2 + · · ·+ fnfn + r−2g = 1.
Note that if aj = 1/2 ∀j, r = 1/3, then E := B̄r(a) ⊂ [1/6, 5/6]n, hence then for every

h ∈ C(Dn)n
R there exists x ∈ E ⊂ Dn such that (f + hg)(x) = 0.

This follows from Lemma 5.2 with K := R, E := B̄r(a) ⊂ Kn, because here x− f(x) = a ∈
E (x ∈ ∂E).

All typical algebras of real-symmetric functions on Dn have bsr ≥ n + 1.

Corollary 5.4. Let A be a subalgebra of C(Dn)R. If A contains the polynomials, then bsrA ≥
n + 1.

Indeed, now with f, g from Corollary 5.3 we have (f, g) ∈ Un+1(A) but f +hg 6∈ Un(A) for
every h ∈ An.

A converse is given in Theorem 5.16.
By a function algebra we mean an algebra of functions with the standard operations

(fg)(z) := f(z)g(z), (f + g)(z) = f(z) + g(z), (αf)(z) := αf(z). A topological function
algebra means a topological algebra that is a function algebra.

Corollary 5.5. Let E ⊂ Rn have a nonempty interior. Assume that A ⊂ C(E;R) is a
function algebra, and that A contains the polynomials. Then bsrA ≥ n + 1.

Indeed, the f and g defined by (6) satisfy (f, g) ∈ Un+1(A) and (f, g) is not reducible.
We note that in [37] it was shown that bsrA ≥ n + 1 and bsrC(E;R) = n + 1 also if, for

example, E is any topological space with d(E) = n and A is a dense subring of the set of
bounded real-valued continuous functions on E.

The three above corollaries are useful for real algebras only, so next we construct fairly
elementary elements of C(Tm;C) that are not reducible. These will also be used in certain
proofs later on.

Corollary 5.6. Let 0 6= n ∈ N, r ∈ (0, 1). Set Tr := {eit : t ∈ [−r, π/2 + r]} ⊂ T. Define
g, fj ∈ C(T2n;C)R by

(7)

fj(z) := [z2j−1 + z−1
2j−1 + z2j − z−1

2j ]/2 = Re z2j−1 + i Im z2j ,

g(z) := r2 − |f(z)|2 = r2 −
n∑

j=1

fj(z)fj(z̄)

(j = 1, . . . , n, z ∈ Tn). If h ∈ C(T2n
r ;Cn), then (f + gh)(z) = 0 for some z ∈ T2n

r . Moreover,
(f, g) : T2n → Cn+1 has no zeros, and f1f1 + f2f2 + · · ·+ fnfn + r−2g = 1.

Proof. Note that f and g are real-coefficient polynomials in zj and z̄j = z−1
j (j ≤ 2n), and

that so is f̄j = fj (̄·), hence (7) holds. In particular, fj , g ∈ C(T2n;C)R (j ≤ n). If f(z) = 0,
then g(z) = r2, and so (f, g) has no zeros. Set

a := (π/2, . . . , π/2) ∈ Cn, E := {w ∈ Cn : |w − a| ≤ r}.
If w ∈ E, then Rewj ∈ [π/2− r, π/2 + r] and Imwj ∈ [−r, r]. Define φ ∈ C(E;T2n

r ) by

φ(w)2j−1 := ei cos−1(Re wj−π/2), φ(w)2j := ei sin−1 Im wj (w ∈ E, j ≤ n).

For w ∈ E, z := φ(w) ∈ T2n
r , we have

Re f(z)j = Re z2j−1 = Rewj − π/2, Im fj(z) = Im z2j = Im wj (w ∈ E),
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hence f(φ(w)) = w − a (w ∈ E). Consequently, g(φ(w)) = r2 − |w − a|2, and so for w ∈ ∂E,
g(φ(w)) = 0. Moreover, w − f(φ(w)) = a ∈ E is a constant, so we can apply Lemma 5.2 to
f ◦ φ, g ◦ φ and h ◦ φ to obtain w ∈ E such that (f + gh)(φ(w)) = 0.

Note: it suffices that h ∈ C(φ[E];Cn). ¤

We conclude that all of our noncausal subalgebras of C(Tm) have bsr > m/2.

Corollary 5.7. Let A ⊂ C(Tm) be a function algebra. If zj , z
−1
j ∈ A (j = 1, 2, . . . , m), then

bsrA ≥ bm/2c+ 1.

Note that here A is either a real algebra or a subalgebra of C(Tm).

Proof. This follows directly from Corollary 5.6 if m = 2n. Assume then that m = 2n + 1.
Set f ′(z, w) := f(z), g′(z, w) := g(z) (z ∈ T2n, w ∈ T). Then f ′j , g

′ ∈ A (j ≤ n). Given
h′ ∈ Am, set h(z) := h′(z, 1) (z ∈ T2n) to have 0 = (f + hg)(z) for some z ∈ T2n

r and so
0 = (f ′ + h′g′)(z, 1). Thus f ′ + h′g′ 6∈ Un(A). ¤

A converse is given in Theorem 5.13.
To construct our ultimate nonreducible unimodular vector, we need the following technical

lemma. It uses the fact that φ(z) := tan π
4 z maps [−1, 1] → [−1, 1] but shrinks the vertical

direction.

Lemma 5.8. Set φ(z) := tan π
4 z, ψ(z) := iφ(−iz). Then φ and ψ are holomorphic on

a neighborhood of D, φ(z) ∈ D when −1 < Re z < 1, ψ(z) ∈ D when −1 < Im z < 1,
φ(±1) = ±1, and ψ(±i) = ±i. In particular, Reψ(z) ∈ (−1, 1) and Imφ(z) ∈ (−1, 1) when
z ∈ D. Moreover, φ(z) = φ(z), ψ(z) = ψ(z).

Finally, there exists ε > 0 such that for every r ∈ (0, ε) we have

(8)
x + Re rφ(eix) ∈ [1, π − 1] (x ∈ [0, π]),

x + π/2− Im rψ(eix) ∈ [1, π − 1] (x ∈ [−π/2, π/2]).

Proof. Most claims are straightforward (note that φ has poles at 2 + 4n (n ∈ Z) and that
sin and cos are real-symmetric), and so we only prove (8). Since φ(−z) = −φ(z) (z ∈ D),
we have Im rψ(ei(x−π/2)) = Im rψ(−ieix) = Im riφ(−eix) = −Re rφ(−eix), and so the latter
claim in (8) follows from the former, which we establish below.

The function g(x) := x + rφ(eix) has g′(x) = 1 + ireixφ′(eix). Thus we have Re g′(x) ≥
0 (x ∈ [0, π]) once we require that r is sufficiently small (which we do). But Re g(0) = 1 + r,
so g(x) ≥ 1 (x ∈ [0, π]). Now Re g(x) ≤ π/2 + r ≤ π − 1 (x ∈ [0, π/2]) if r is small. Hence
Re g(x) ∈ [1, π − 1] (x ∈ [0, π/2]).

Given x ∈ [0, π/2], set z := eix, w := ei(π−x) = −z. Since φ(−z) = −φ(z), we have
Reφ(w) = −Re φ(z), and so

g(π − x) = π − x + r Reφ(ei(π−x)) = π − (x + r Reφ(eix)) = π − Re g(x) ∈ [1, π − 1].

Consequently, x + Re rφ(eix) ∈ [1, π − 1] ∀x ∈ [0, π]. ¤

Now we can construct a unimodular vector (f, g) ∈ Uk+1(F`1(Nm;R)) that is not “reducible
on Tm”, hence nor in many algebras, as noted later below. So we shall have f, g holomorphic
on Dm (unlike in Corollary 5.6) and it suffices that h is defined on (a part of) Tm (unlike in
Corollary 5.3). The price that we pay is the fact that f is not a polynomial.
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Lemma 5.9. Let 0 6= k ∈ N, m := 2k. Define g, fj ∈ C(Dm;C) by

(9)
g(z) :=

k∏

j=1

(z2
2j−1 − 1)(z2

2j + 1) (z ∈ Dm),

fj(z) := −rφ(z2j−1) + rψ(z2j) (j = 1, . . . , k, z ∈ Dm),

where φ, ψ and r ≤ 1 are as in Lemma 5.8. Set E1 := [0, π] × [−π/2, π/2], E := Ek
1 ⊂ Rm,

Em := eiE ⊂ Tm. If h ∈ C(Em;Ck), then (f + gh)(z) = 0 for some z ∈ Em. Moreover,
(f, g) : Dm → Ck+1 has no zeros on Dm, and f and g are absolutely converging sums of
real-coefficient polynomials on a neighborhood of Dm, hence (f, g) ∈ Uk+1(F`1(Nm;R)) is not
reducible.

Proof.
1◦ Let z ∈ Dm. We have g(z) = 0 iff z2j = ±i or z2j−1 = ±1 for some j ≤ k. If

z2j−1 = ±1, then Re fj(z)/r = ∓1 + Reψ(z2j) ∈ ∓1 + (−1, 1) = ∓(0, 2) 63 0, hence
then fj(z) 6= 0. Similarly, if z2j = ±i, then Im fj/r ∈ (−1, 1)± 1 63 0. Consequently,
g(z) = 0 ⇒ f(z) 6= 0 for every z ∈ Dm. Moreover, g is a polynomial and φ and
ψ are holomorphic (hence their MacLaurin polynomials converge absolutely) on a
neighborhood of D, by Lemma 5.8, which also shows that φ and ψ are real-symmetric
(that is, they have real coefficients), so we have proved the last sentence (use Theorem
4.5 for unimodularity).

2◦ Set Gf (x) := f(eix), Gg(x) := g(eix), Gh(x) := h(eix), (x ∈ E), where eix :=
(eix1 , . . . , eixm). Then Gf , Gh ∈ C(E;Ck), Gg ∈ C(E;C). We shall soon apply Lemma
5.2 to Gf , Gg and Gh. From 1◦ we observe that Gg = 0 on ∂E.

3◦ We have x−Gf (x) ∈ E for every x ∈ E. Indeed, let x ∈ E. Set wj := x2j−1+ix2j (j ≤
k), so that w ∈ Ck is identified with x ∈ Rm. Set z := eix. Then z2j−1 = eix2j−1 ,
and so Rewj − ReGf (w)j = x2j−1 − Re fj(z) = (x2j−1 + Re rφ(z2j−1))− r Reψ(z2j)
∈ [1, π−1]+r[−1, 1] ⊂ [0, π], by (8). Similarly, Imwj−Im Gf (w)j = x2j−Im rψ(z2j)+
r Imφ(z2j−1) ∈ [1, π − 1] − π/2 + r[−1, 1] ⊂ [−π/2, π/2]. Thus wj − Gf (w)j ∈ E1.
Since this holds for any j ≤ k, we have w −Gf (w) ∈ E.

4◦ By 2◦ and 3◦, we have F ∈ C(∂E;E), where F (x) := x − Gf (x). Identify E ⊂ Rm

with E ⊂ Ck (and consider Gf , Gg and Gg as defined on the latter). By Lemma 5.2
(and Lemma 5.1), there exists x ∈ E such that (Gf +GgGh)(x) = 0. Set z := eix ∈ Tm

to complete the proof.
¤

Corollary 5.10. Let A ⊂ C(Tn) be a function algebra. If F`1(Nn;R) ⊂ A, then bsrA ≥
bn/2c+ 1.

Proof. The proof of Corollary 5.7 applies here too, mutatis mutandis, with Lemma 5.9 in place
of Corollary 5.6. Use also the fact that (f, g) ∈ Uk+1(F`1(Nn;R)) by the corona theorem 4.5,
and observe that Uk+1(F`1(Nn;R)) ⊂ Uk+1(A). ¤

The assumptions of Corollary 5.10 are weakened in Lemma 9.7, a converse is given in
Theorem 5.13, and a related result is given in Corollary 6.3.

5.2. bsr and tsr. Practically all topological algebras of holomorphic functions (except K1)
have tsr ≥ 2, as the proof below shows.
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Lemma 5.11. Let A ⊂ H∞(Ω) be a function algebra with topology. Assume that the sup-
norm is continuous on A. If some f ∈ A 6= {0} has a zero on Ω, then tsrA ≥ 2.

Proof. If f(z) = 0 and fn → f in A, as n → ∞, then the function fn has a zero near z for
each big n, by Hurwitz’ Theorem. Therefore, f 6∈ U1(A), so tsrA > 1. ¤

From [8] we conclude the following.

Lemma 5.12. bsr `1(Nn) = bn/2c+ 1.

Proof. Let A = `1(Nn). By Corollary 5.10 (or [8, Theorem 3.12] or [28, Theorem 3.3]),
bsrFA ≥ bn/2c+1. By [8, p. 543], bsrA ≤ dsrA, and by [8, Theorem 3.4], dsrA ≤ bn/2c+1
(since it is a n-generated unital complex commutative Banach algebra). Here dsr stands for
“dense stable rank”; the interested reader is referred to [8] for the definition and background
of this concept. ¤

Recall that C(Tn)R = {f ∈ C(Tn) : f(z̄) = f(z) ∀z ∈ Tn} is a real Banach algebra.
Set 1/z := (z−1

1 , . . . , z−1
n ) for all z ∈ (C \ {0})n. Now we show that its typical noncausal

subalgebras have bsr = tsr = bn/2c+ 1.

Theorem 5.13. Let A ⊂ C(Tn) be a topological function algebra containing all real poly-
nomials. Assume that some functions holomorphic on a neighborhood Tn are dense in A.
Assume that f(1/·) ∈ A for all f ∈ A. Assume also that for any k ≥ 1 a function f ∈ Ak is
unimodular if f(z) 6= 0 for all z ∈ Tn. Then bsrA = tsrA = bn/2c+ 1.

Proof. By Corollary 5.7 and Proposition 3.2 we have bn/2c+1 ≤ bsrA ≤ tsrA. So it remains
to show that tsrA ≤ bn/2c+ 1, and we do this below.

(The proof below could be simplified if we assumed that A is a complex (not real) algebra.
The same applies to Theorem 5.16. The reader may wish to first read the proof of Lemma
8.5, which is a simplified version of this.)

Set k := bn/2c + 1. Then 2k ≥ n + 1. Let f ∈ Ak be holomorphic on a neighborhood of
Tn. We shall show that f ∈ Uk (it follows that tsrA ≤ k). Set

P := {p ∈ {−1, 0, 1}n : pj = 0 ∀j > k}.
For each p ∈ P and j ∈ {1, . . . , n} we define

Ep
j :=





{pj}, if pj 6= 0;
T \ {±1}, if pj = 0, j ≤ k;
T, if j > k;

gp
j (z) :=

{
0, if pj 6= 0 or j > k;
Im fj(z)/ Im zj , if pj = 0 and j ≤ k.

Obviously, Tn = ∪p∈PEp, where Ep :=
∏n

j=1 Ep
j . By #p we denote the number of j such that

pj 6= 0. Set Fp := (Re f ; gp) ∈ C1(Ep;R2k) (p ∈ P) (with slight abuse of notation, similarly
below). Since Ep is n−#p-dimensional, by Lemma A.2 we have3 mn+1−#p(Fp[Ep]) = 0, and
so mn+1(Fp[Ep]× R#p) = 0. From the above mn+1(Np) = 0, where

Np :=



{Re f(z)} ×

k∏

j=1

{
R, if pj 6= 0;
{gp

j (z)}, if pj = 0
: z ∈ Ep



 ⊂ R2k.

3Here, by mj(A) = 0, we mean that A is the C1 image of some A′ ⊂ Rj satisfying mj(A
′) = 0. By Lemma

A.2, this is equivalent to the standard definition if A ⊂ Rj .
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Thus, m2k(Np) ≤ mn+1(Np) = 0 (for any p ∈ P). Set N := ∪p∈PNp ⊂ R2k. Then m2k(N) =
0, and so we can fix an arbitrarily small (by absolute value) (r; t) ∈ R2k \ N . Define h ∈
C∞(Tn;R2k) by

h(z) := (Re f(z); Im f(z))− (r; t1 Im z1, . . . , tk Im zk).

We now assume that h(z) = 0 for some z ∈ Tn and derive a contradiction. Pick p ∈ P such
that z ∈ Ep. Then Re f(z) = r and gp

j (z) = tj for those j ≤ k for which pj = 0. Consequently,
(r, t) ∈ Np, a contradiction. Thus h has no zeros.

Hence the function

G := f − r − i(t1 Im z1, . . . , tk Im zk) : Tn → Ck

has no zeros (because h = (ReG, ImG)). But G ∈ Ak, since i Im zj = (zj − z−1
j )/2 ∈ A, and

so G ∈ Uk(A) (having no zeros). As G was arbitrarily close to f , we have tsrA ≤ k. ¤

The above applies to all of our “noncausal n-dimensional classes”.

Corollary 5.14. We have bsrA = tsrA = bn/2c+ 1 when A equals any of C(Tn), C(Tn)R,
`1(Zn), `1(Zn;R), M(n) and (M(n))R.

Proof. By Remark 2.1, M(n) and (M(n))R may be omitted, so the corollary follows from
Theorem 5.13. Indeed, the real or complex polynomials in z1, . . . , zn; z−1

1 . . . , z−1
n are dense

C(Tn), C(Tn)R and F`1’s, by Lemma A.1; by the Corona Theorems 4.3 and 4.5, also the
unimodularity condition is satisfied; obviously also the other assumptions of Theorem 5.13
are satisfied. ¤

Corollary 5.15. Let A ⊂ C(Tn) be a full subalgebra. Assume that zk, z
−1
k ∈ A for k =

1, 2, . . . , n. Then bsrA = bn/2c+ 1.

Note that A being full in C(Tn) means that f−1 ∈ A if f ∈ A and f(z) 6= 0 for all z ∈ Tn.

Proof. Assume first that A is complex. Since A is dense in C(Tn) (Lemma A.1), from Lemma
3.6, it follows that bsrA ≤ bsrC(Tn) = bn/2c+ 1. But bsrA ≥ bn/2c+ 1, by 2◦ of the proof
of Theorem 5.13. The real case is analogous (replace C(Tn) by C(Tn)R). ¤

Next we study the “causal case”. Recall that by A(Dn) we denote the polydisc algebra of
continuous functions Dn → C that are holomorphic on Dn. For this algebra and its typical
subalgebras we have tsrA = n + 1; in the real case also bsrA = n + 1.

Theorem 5.16. Let K ⊂ Cn and suppose that A ⊂ C(K) is a topological function algebra
containing all real polynomials. Assume that some functions holomorphic on a neighborhood
K are dense in A. Assume also that a function f ∈ An+1 is unimodular if f(z) 6= 0 for all
z ∈ K. Then tsrA ≤ n + 1. If K has a nonempty interior and the sup norm is continuous
on A, then tsrA = n + 1. If A ⊂ C(K)R, and B̄r(a) := {x ∈ Rn : |x− a| ≤ r} ⊂ K for some
a ∈ Rn and r > 0, then bsrA = tsrA = n + 1.

In the last claim we have set C(K)R := {f ∈ C(K) : f(x) ∈ R ∀x ∈ K ∩ Rn}. One can
verify that A(Dn)R = C(Dn)R.

Proof.
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1◦ (This is similar to the proof of Theorem 5.13.) Let f ∈ An+1 be holomorphic on a
neighborhood V of K. Let P be the collection of sets p ⊂ {1, . . . , n + 1} such that
either {1, n + 1} ⊂ p or {1, n + 1} ⊂ P \ p (this way we get no problems from defining
zn+1 := z1 below). Set zn+1 := z1 for any z = (z1, . . . , zn) ∈ Cn. For any p ∈ P define
Qp :=

∏n
j=1 Qp

j ,

Qp
j :=

{
R, if j ∈ p;
{0}, if j 6∈ p,

gp
j (z, q) :=

{
qj , if j ∈ p;
Im fj(z)/ Im zj , if j 6∈ p,

and V p := {z ∈ V : Im zj = 0 ∀j ∈ p and Im zj 6= 0 ∀j 6∈ p}. Obviously, V = ∪p∈P V p.
By #p we denote the number of elements in p. Set for p ∈ P , j ∈ P ,

fp
j (z, q) := Re fj(z)− gp

j (z, q)Re zj ,

Fp := (fp; gp) ∈ C(V p ×Qp;R2n+2).

Since V p (respectively, Qp) is diffeomorphic to an open subset of R2n−#p (respectively,
R#p), we observe that Fp has the same range as a C1 function on an open subset of
R2n−#p × R#p = R2n, so m2n+2(Np) = 0, where Np := Fp[V p × Qp], by Lemma
A.2. Set N := ∪p∈P Np. Then m2n+2(N) = 0, so we can fix an arbitrarily small (by
absolute value) (r; t) ∈ R2(n+1) \N . Set

G(z) := f(z)− r − (t1z1, . . . , tn+1zn+1) (z ∈ K)

(recall that zn+1 := z1). Then G ∈ An+1 is arbitrarily close to f .
We now assume that G(z) = 0 for some z ∈ V and derive a contradiction. Pick

p ∈ P such that z ∈ V p. Define q ∈ Qp by qj := tj if j ∈ p (that is, if Im zj = 0),
and by qj := 0 otherwise. Then, for any j = 1, . . . , n + 1, we have 0 = ImGj(z) =
Im fj(z)− tj Im zj , hence gp

j (z, q) = tj , and 0 = ReGj(z) = Re fj(z)− rj − tj Re zj =
fp

j (z, q) − rj , hence fp
j (z, q) = rj . Therefore, (r, t) = Fp(z, q) ∈ Np, a contradiction.

Hence G(z) 6= 0 for all z ∈ V . Consequently, G ∈ Un+1(A). Since G was arbitrarily
close to f , tsrA ≤ n + 1.

2◦ Assume that K◦ 6= ∅. Pick a ∈ K◦. Set gj(z) := zj − a (j ≤ n). Then g ∈ An. Given
f ∈ An, set Ff (r, t) := (Re f(r + it), Im f(r + it)). Then Fg ∈ C∞(V ;R2n), where
V := {(Re z, Im z) : z ∈ K◦} ⊂ R2n is a neighborhood of a0 := (Re a, Im a). Since
Fg(a0) = 0 and F ′

g(a0) = I, the function Fg + h has a zero when ‖h‖∞ < δ, where
δ is from Lemma A.5. If f ∈ An is sufficiently close to 0, then ‖f‖∞ < δ and so
‖Ff‖∞ < δ. It follows that Fg+f = Fg + Ff has a zero (r, t) ∈ V , so r + it ∈ K◦ and
(g + f)(r + it) = 0. Hence g + f 6∈ Un(A). Thus g 6∈ Un, and so tsrA > n.

3◦ Assume now that A ⊂ C(K)R and E := Br(a) ⊂ K. In Corollary 5.3 we have
(f, g) ∈ Un(A). If h ∈ An ⊂ C(K)n

R, then h|E ∈ C(E;Rn). Hence f + hg has a zero,
by Corollary 5.3. Thus (f, g) is not reducible. So bsrA ≥ n + 1. By Proposition 3.7
and 1◦, we get that n + 1 ≤ bsrA ≤ tsrA ≤ n + 1.

¤

For bsr, Theorem 5.13 only gives an upper bound in the complex case; a lower bound is
given in Corollary 5.10 (which can be adapted to most cases). Exact results for some complex
cases were given in [8] using the Arens–Taylor–Novodvorski theory; we present further results
in Corollary 5.18 below.
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Corollary 5.17. We have tsrA = n + 1 and bsrA = bn/2c + 1 when A equals any of
A(Dn), `1(Nn), and M(n+)

+ . Moreover, bsrA = tsrA = n + 1 when A equals any of A(Dn)R,

`1(Nn;R), and (M(n+)
+ )R.

Proof. We may omit the proofs forM(n+)
+ and (M(n+)

+ )R, by Remark 2.1. We have bsr `1(Nn) =
bn/2c + 1, by Lemma 5.12, and bsrA(Dn) = bn/2c + 1, by [8, Corollary 3.13]. Polynomials
(hence also F`1) are dense in A or in FA, and the Corona Theorems 4.3 and 4.5 provide the
remaining assumptions of Theorem 5.16, which yield the remaining claims. ¤

Below fullness obviously means that if f ∈ A and f 6= 0 on Dn, then f−1 ∈ A, that is, that
A is “inversionally closed”.

Corollary 5.18. If A is a full subalgebra of A(Dn) (respectively, of A(Dn)R), and A contains
the polynomials, then bsrA = bn/2c+ 1 (respectively, bsrA = n + 1).

Proof. By Lemma 3.6 (and Lemma A.1 and Corollary 5.17), we have bsrA ≤ bsrA(Dn) =
bn/2c + 1 (respectively, bsrA ≤ bsrA(Dn)R = n + 1). By [28, Theorem 3.3] (respectively,
Corollary 5.4), we have bsrA ≥ bn/2c+ 1 (respectively, bsrA ≥ n + 1).

Actually, [28] treats the unit ball, and there is a slight mistake in its proof, so we rewrite
Rupp’s proof here for Dn. Set Bn := {z ∈ Cn : |z| ≤ 1} ⊂ Dn. Then A(Dn) ⊂ A(Bn), where
A(Bn) stands for continuous functions Bn → C that are holomorphic in the interior of Bn.

Set k := bn/2c. Define f = (f1, f2, . . . , fk) ∈ A(Dn)k by fj(z) := zj . Set

g(z) := z1zk+1 + . . . + zkz2k − 1/4.

Then zk+1f1 + . . . + z2kfk − g = 1/4 ∈ U1, so (f, g) ∈ Uk+1(A). If h : Bn → Ck is continuous,
then (f + hg)(ζ) = 0 for some ζ ∈ Dn. Indeed, define fj , hj , g ∈ C(Bk;C) by

f ′(z) := f(z, z̄, 0), g′(z) := g(z, z̄, 0) = |z|2 − 1/4, h′(z) := h(z, z̄, 0)

(remove the 0’s if n = 2k) to obtain, from Lemma 5.2, a z ∈ E := Bk/2 such that (f +
hg)(z, z̄, 0) = (f ′+h′g′)(z) = 0, so that (f, g) is not reducible (since (z, z̄, 0) ∈ Bn ⊂ Dn). ¤

Corollaries 5.17 and 5.18 also hold with the open unit ball {z ∈ Cn : |z| < 1} in place of
Dn, with the same proofs; this sharpens [28, Theorem 3.3] (using partially Rupp’s result).

Next we compute the bsr’s and tsr’s for the K+ L1 classes, using the above theorems.
From [5, pp. 62–63] one gets the following lemma; in particular, that real-coefficient rational

functions are dense in F(Rδ0 + L1(R;R)).

Lemma 5.19. [Real] linear combinations of (· + 1)−k (respectively, at (· ± 1)−k) (k =
0, 1, 2, . . .) form a dense subset of [real-symmetric elements of ] F(Cδ0 + L1

+) (respectively,
of F(Cδ0 + L1)).

(The alternative real claim follows from the complex one by taking real parts in Cδ0 + L1
+

(respectively, in Cδ0 + L1).)
Because the Cayley transform maps −1 7→ ∞ and 1 7→ 0, Lemma 5.19 and the corona

theorems lead to the following.

Lemma 5.20. Let A denote Cδ0+L1
+ (respectively, Rδ0+L1(R+;R), Cδ0+L1, Rδ0+L1(R;R))

and let A′ denote A(D) (respectively, A(D)R, C(T), C(T)R). Then the embedding

(10) f : A 3 g 7→ ĝ ◦ φ ∈ A′
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where φ is the Cayley transform z 7→ (1− z)/(1+ z), is a continuous algebra homomorphism,
and the polynomials in z (respectively, real polynomials in z, polynomials in z and z−1, real
polynomials in z and z−1) form a dense subset of f [A] (in the topology coinduced from A). An
element of f [A]n is unimodular iff it has no zeros on D (respectively, D, T, T). In particular,
(10) satisfies the assumptions of Corollary 3.8.

For A equal to Cδ0 + L1 or Rδ0 + L1(R;R), we also have h(1/·) ∈ f [A] for every h ∈ f [A].

Proof. The containment and density of polynomials was essentially explained below Lemma
5.19. The sup-norm is continuous on A and invariant under f , and so f is continuous. The
unimodularity claim follows from the corona Theorems 4.3 and 4.5. The last claim follows
from the facts that f(g)(1/z) = f(g(−·))(z) and g(−·) ∈ A if g ∈ A, z ∈ T. ¤

Theorem 5.13 applies to Cδ0 + L1 and to Rδ0 + L1(R;R) as well, by Lemma 5.20.

Corollary 5.21. We have bsr(Cδ0 + L1) = tsr(Cδ0 + L1) = 1, and bsr(Rδ0 + L1(R;R)) =
tsr(Rδ0 + L1(R;R)) = 1.

From Lemma 5.20 and [29, Remark, p. 87] we conclude that bsr(Cδ0+L1
+) = 1. By Lemma

5.20, Theorem 5.16 (with K := D) applies to Cδ0 + L1
+ and to Rδ0 + L1(R+;R) as well. This

implies the following.

Corollary 5.22. We have bsr(Cδ0+L1
+) = 1, tsr(Cδ0+L1

+) = 2, and bsr(Rδ0+L1(R+;R)) =
tsr(Rδ0 + L1(R+;R)) = 2.

Notes
We mention below some simpler (or more constructive) proofs for cases “n = 1”.

For C(T), `1(Z), M(1) and Cδ0 + L1 (see Corollary 5.14), to show that tsr = 1, we could
alternatively add a small constant c ∈ C such that −c is in the range of the function/transform
(use Lemma A.2 and the density of holomorphic functions). This also leads to a constructive
proof of bsr = 1; see the end of §10.

The fact that tsr ≤ 2 for these algebras and their real counterparts can also be shown
as follows: given (f, g), assume that f or f̂ (depending on the algebra) is holomorphic on a
neighborhood of the domain (so that it has only finitely many zeros) and add a constant to
g or ĝ so that it is nonzero at the zeros of f or f̂ . In the causal cases we also have tsr ≥ 2,
by Lemma 5.11.

As mentioned above Theorem 1.2, some of the results in this section were already known.

6. Infinitely many generators: M, `1(R), AP, . . .

In this section we prove all bsr = ∞ results of Table 1 and related results.
Given k, in Lemma 6.2 we construct a k +1-unimodular real-valued causal measure that is

not reducible by any measure (nor in F−1 AP). From this we conclude in Corollaries 6.3 and
6.4 the bsr = ∞ results of Table 1. Naturally, other analogous results can also be concluded.
Corollary 6.3 solves Mortini’s problem, as mentioned in Remark 6.5.

We start from a technical lemma: the Q-basis of the Q-span of a finite set A can be chosen
so that the coordinates of each element of A become integers.

Lemma 6.1. If A ⊂ R is finite and the Q-dimension n := dimQ(spanA) ≥ 1, then there are
(necessarily Q-linearly independent) r1, . . . , rn ∈ span(A) ∩ R+ such that every a ∈ A can be
written as

∑n
k=1 mkrk for some m1, . . . ,mn ∈ Z.
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If A ⊂ R+, then it is possible to replace Z by N above; we omit the proof.

Proof. Pick a Q-basis r1, . . . , rn of Q-span(A) := Qa1 + . . . +Qal, where A = {a1, a2, . . . , al}.
Divide rk (k = 1, . . . , n) by the product of the denominators of the coordinates mk (k =
1, . . . , n) for each a ∈ A, and finally replace rk by |rk|. ¤

Now we can construct unimodular functions that are non-reducible in all of our infinite-
period algebras.

Lemma 6.2. Let 0 6= k ∈ N. Define fj , g ∈ F`1(N2k;R) (j ≤ k) by (9). Let T1, . . . , T2k > 0 be
independent over Q. Set f ′(s) := f(e−sT ), g′(s) := g(e−sT ), where e−sT := (e−sT1 , . . . , e−sT2k).
Then (f ′, g′) ∈ FUk+1((M(2k+)

+ )R), but if h′ ∈ AP, then infiR |f ′ + g′h′| = 0.

In particular, a certain coprime pair (f ′, g′) ∈ FU2((M(2+)
+ )R) is not reducible by any

h′ ∈ AP (though it is reducible by some h′ ∈ H∞, since bsrH∞ = 1).
Note that given independent (over Q) “delays” T1, T2 > 0, the set F(M(2+)

+ )R consists of
functions f ′(s) =

∑
j,l∈N aj,le−s(jT1+lT2), where a ∈ `1(N2;R). From (9) we observe that in

the lemma the function g is a polynomial and f is holomorphic on a neighborhood of D2.
Hence the above a satisfies

∑
j,l r

j+l|aj,l| < ∞ for some r > 1 and g′ is a finite sum of the
above form (its “a” has a finite support).

Proof of Lemma 6.2: From the last sentence of Lemma 5.9 and Remark 2.1 it follows that
(f ′, g′) ∈ Uk+1((M(2k+)

+ )R). By density (in AP), we can assume that h′ is a linear combination
of a finite number of functions e−·r

′
j , where r′j ∈ R (j = 1, . . . , n′). Apply Lemma 6.1 to the

set S := (∪2k
j=1Tj) ∪ (∪n′

j=1r
′
j) to obtain a Q-basis r1, . . . , rn ⊂ (0,∞) of this set (where

n := dimQ span(S)). Note that A ∈ Z2k×n, where A is the matrix defined by the (unique)
representation Tj =

∑n
l=1 Aj,lrl (j ≤ 2k). Set

(11) T := (T1, . . . , T2k) ∈ R2k, r := (r1, . . . , rn) ∈ Rn.

Then T = Ar. Since each r′j is a Z-linear combination of rl’s (that is, r′j =
∑n

l=1 αlrj for
some α ∈ Zn), we can write h′ with the multinomial notation rα := rα1

1 · · · rαn
n as

h′(s) =
∑

α∈Zn

hαe−s
Pn

l=1 αlrl =
∑

α∈Zn

hα

∏

l

(e−srl)αl =
∑

α∈Zn

hα(e−sr)α (s ∈ iR)

for some {hα}α∈Zn ∈ `1(Zn) (whose support is finite). Moreover, we have4

β · T :=
2k∑

j=1

βjTj = β · (Ar) = r · (A>β) (β ∈ Z2k).

The matrix A> must be one-to-one, because β 7→ β ·T is one-to-one. Set B := A>(AA>)−1 ∈
Rn×2k. Then AB = I. Set E0 := T \ {e−i3π/4}. Let arg : E0 → (−3π/4, 5π/4) denote
a continuous branch of arg and also the corresponding function E2k

0 → (−3π/4, 5π/4)2k.
Define φ ∈ C(E2k

0 ;Tn) by φ(z) := eiB arg z. Define the function h ∈ C(E2k
0 ;Ck) by

h(z) :=
∑

α∈Zn

hαφ(z)α (z ∈ E2k
0 ).

4By > we denote the transpose, by T the vector in (11).
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By Lemma 5.9, there exists z ∈ E2k ⊂ E2k
0 such that (f + gh)(z) = 0. Set x := arg z.

Let ε > 0 be given. Using the uniform continuity of f and g one can show that there exists
δ′ > 0 such that

(12) |f(z′) + g(z′)c| < ε when z ∈ T2k, c ∈ Ck, |z′ − z| < δ′, |c− h(z)| < δ′.

Set h′′(w) :=
∑

α∈Zn hαwα (w ∈ Tn). Pick δ ∈ (0, δ′) such that

(13) |h′′(w)− h′′(w′)| < δ′ when w, w′ ∈ Tn, |w − w′| < δ.

By Kronecker’s Theorem, there exists s ∈ iR such that |e−sr−eiBx| is arbitrarily small, hence
such that

|sr + iBx + i2πq| < δ/|A| ≤ δ and hence
∣∣e−sr − eiBx

∣∣ < δ

for some q ∈ Zn. Then δ > |sAr + iABx + i2πAq| = |st + ix + i2πAq|. Therefore,

(14)
∣∣e−sT − eix

∣∣ =
∣∣∣e−sT − ei(x+2πAq)

∣∣∣ < δ.

Since z = eix, we conclude from (12)–(14) that (set z′ := e−sT , w := e−sr, and w′ := eiBx,
and note that h′(s) = h′′(e−sr) =: c and h(z) = h′′(φ(z)) = h′′(eiBx))

(15) |f ′(s) + g′(s)h′(s)| = |f(e−sT ) + g(e−sT )h′′(e−sr)| = |f(z′) + g(z′)c| < ε.

As ε > 0 was arbitrary and s ∈ iR, the proof is complete. ¤

Observe that F(M(n+)
+ )R consists of functions of the form

∑
α∈Nn aαe−·

Pn
j=1 αjTj , where

a ∈ `1(Nn;R).

Corollary 6.3. Let T1, T2, . . . > 0 be Q-linearly independent. We have bsrA ≥ bn/2c + 1
when A ⊂ AP is any (real or complex) function algebra that contains F(M(n+)

+ )R.
In particular, bsrA = ∞ when A stands for any of the following: M, MR, M+, M+R,

AP, (AP)R, AP+, (AP+)R.

Recall that tsr ≥ bsr, by Proposition 3.2. The assumption on F(M(n+)
+ )R will be weakened

in Lemma 9.7.

Proof. If k := bn/2c ≥ 1, define f ′, g′ as in Lemma 6.2. If h′ ∈ A ⊂ AP, then, for every
F ∈ A we have infiR |F · (f ′ + g′h′)| = 0. Hence F · (f ′ + g′h′) 6= 1, and so f ′ + g′h′ 6∈ Uk(A).
Consequently, bsrA ≥ k+1. Since k was arbitrary, bsrA = ∞. The second paragraph follows
from the first (because F is an isomorphism). ¤

The result bsr AP = ∞ was already established in [33], using an alternative method (and
the fact that tsr = bsr for C∗-algebras [14]). The other results seem to be new.

Corollary 6.4. We have bsrA = ∞ when A stands for any of the following `1(R), `1(R;R),
`1(R+), `1(R+;R), M+ L1, (M+ L1)R, M+ + L1

+, and (M+ + L1
+)R.

Proof. For the `1 classes, use Corollary 6.3 and Remark 2.1. By Lemma 3.9 we get the other
four results (because, for example, (M+ L1)/L1 = M). ¤

Remark 6.5 (Answer to Mortini’s question). S. Treil showed that bsrH∞ = 1 [36]. The
question about what the situation looks like for subalgebras of H∞ was asked in [20], where
it was shown that H∞ has closed subalgebras with arbitrary stable rank, and even bsr = ∞
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is possible. However, in these subalgebras constructed in [20], the unit disk is not dense in
the spectrum, and the following open problem was mentioned there:

Is there a closed subalgebra A of H∞, such that the maximal
ideal space of A contains D as a dense subset, and bsrA > 1?

We have answered this question affirmatively (with the isomorphic space H∞(C+) in place of
H∞(D)). Indeed, AP+ is a closed subalgebra of the Hardy space H∞(C+) of the half-plane,
and its maximal ideal space contains the open half-plane C+ as a dense subset [24, Theorem
2.3]. Since we have shown that bsrAP+ = ∞ in Corollary 6.3, this settles the above question.

If n ∈ {2, 3, . . .}, then the algebra An := AP2n−2
+ ⊂ H∞(C+) of Remark 8.6 below satisfies

bsrAn = n, and C+ is dense in the maximal ideal space of An. Thus, the requirement that
C+ is dense in the maximal ideal space (of a closed subalgebra A of H∞) does not exclude
any value of bsrA.

7. Mixed measures M∗∗ + L1

In this section we study the algebras of the typeA+L1, that is, we take a (discrete measure)
subalgebra A of M and add an absolutely continuous (L1) part.

First we establish some technical results on unimodularity and zeros, and a corona theorem
(Corollary 7.4). In Theorems 7.6 and 7.7 we show that bsr(A + L1) = bsrA etc. in typical
cases. Finally, we prove Theorem 1.2. As always, we accompany any complex results by
corresponding real results.

We start by showing that the discrete part of a left inverse of a measure can be made equal
to any left inverse of the discrete part. (Here G · F :=

∑n
k=1 Gk ∗ Fk.)

Lemma 7.1. Let F,G ∈Mn, G · F = 1, f ∈ L1(R)n and F + f ∈ Un(M+ L1). Then there
exists g ∈ L1(R)n such that (G + g) · (F + f) = 1.

If F,G, f have their supports on R+, then we can have g ∈ L1(R+)n. In addition, if F, G, f
are real-valued, then we can have g real-valued.

Proof.

1◦ Replace all measures/functions by their Laplace transforms. Since G ·f ∈ FL1, by the
Riemann–Lebesgue Lemma there exists R < ∞ such that |(1 + G · f)(z)| ≥ ε > 0 for
|z| > R. With φ(z) := (z+1)−1 ∈ FL1(R+;R), |(1+G·f, φ)| ≥ min{ε, 1/(R+1)} > 0.
By Theorem 4.3, this means that (1 + G · f, φ) ∈ FU2(Cδ0 + L1).

From Corollary 5.21, bsrCδ0 + L1 = 1. So there exists h ∈ FCδ0 + L1 such that
h1 := 1+G ·f +hφ ∈ FU1(Cδ0 +L1). Pick w ∈ F(M+L1)n such that w ·(F +f) = 1.
With g1 := hφw ∈ (FL1)n, (G+g1)·(F +f) = 1+G·f+hφw·(F +f) = h1. By Lemma
4.1, we have h−1

1 = 1+h2 ∈ FCδ0+L1 for some h2 ∈ FL1, and so h−1
1 (G+g1) = G+g,

where g := h2G + g1 + h2g1 ∈ (FL1)n.
2◦ Now we consider the original measures instead of their transforms. If F, G, f have

their supports on R+, then so have the measures in 1◦. If F and f are real-valued, we
can replace G + g by GR + gr (by Lemma 4.4); if G is real-valued, then G = GR.

¤

Next we note that if the discrete part of a measure is unimodular (left-invertible), then so
is the whole measure iff its transform has no “finite” zeros.
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Lemma 7.2. Let µ ∈ Mn and f ∈ L1(R)n. Then µ + f ∈ Un(M+ L1) iff µ ∈ Un(M) and
µ̂ + f̂ 6= 0 on iR.

Let µ ∈ (M+)n and f ∈ L1(R+)n. Then µ + f ∈ Un(M+ + L1
+) iff µ ∈ Un(M+) and

µ̂ + f̂ 6= 0 on C+.

Proof. We prove the first equivalence; the proof of the second one is analogous.
By Lemma 4.1 and Theorem 4.3, the “only if” claim holds. Assume then that µ ∈ Un(M)

and µ̂ + f̂ 6= 0 on iR. By Theorem 4.3, ε := infiR |µ̂| > 0.
From the Riemann–Lebesgue Lemma, there exists R < ∞ such that |f(z)| < ε/2 when

|z| > R. But δ := inf |z|≤R |µ̂ + f̂ | > 0, and so |µ̂ + f̂ | ≥ min{δ, ε/2} everywhere. It follows
from Theorem 4.3 that µ + f ∈ Un(M+ L1). ¤

Now we extend the above result to A in place of M (and include the real case).

Lemma 7.3. Assume that A is a subalgebra of M and that F̄ ∈ A for every F ∈ A (or
drop the claims on AR, MR and M+R below). Then A′ := A + L1(R) is a subalgebra of
M+ L1(R), and Un(A′R) = A′R ∩Un(A′).

Let µ ∈ An and f ∈ L1(R)n. Then µ + f ∈ Un(A + L1(R)) iff µ̂ + f̂ 6= 0 on iR and
µ ∈ Un(A), or equivalently, iff µ + f ∈ Un(M+ L1(R)) and µ ∈ Un(A).

The above also holds if we replace M by M+ (respectively, MR, M+R), L1(R) by L1(R+)
(respectively, L1(R;R), L1(R+;R)), and iR by C+ (respectively, iR, C+).

By Lemma 4.2, this shows that X(A) ∪ iR is dense in X(A+ L1(R)).

Proof. Obviously A+L1 is a subalgebra of M (it is a Banach algebra iff A is complete). The
claim Un(A′R) = A′R ∩Un(A′) follows by taking the real part of a left inverse.

If µ + f ∈ Un(A′) (that is, (G + g) · (µ + f) = 1 for some G + g ∈ (A′)n ⊂ (M + L1)n),
then from Theorem 4.3 we get infiR |µ̂ + f̂ | > 0, and G · µ = I, so µ ∈ Un(A).

Conversely, if µ ∈ Un(A) (that is, G · µ = 1 for some G ∈ A), and µ̂ + f̂ 6= 0 on iR,
then from Lemma 7.2, µ + f ∈ Un(M+ L1). By Lemma 7.1, (G + g) · (µ + f) = 1 for some
g ∈ L1(R)n, and so µ + f ∈ Un(A′).

The above proof also applies in the three other cases (use Theorem 4.5 for real-valued
measures). ¤

If the corona theorem holds for some subalgebra A of M, then it also holds for A + L1

(that is, iR is then also dense in X(A+ L1)), etc., as shown below.

Corollary 7.4 (A + L1 corona). Let A ⊂ M be a n-full (that is, Un(A) = An ∩ Un(M))
subalgebra of M, and that F̄ ∈ A ∀F ∈ A (or drop the claims on AR). Then Un(A+ L1) =
(A+ L1)n ∩Un(M+ L1), and Un(AR + L1(R;R)) = (AR + L1(R;R))n ∩Un(M+ L1), hence
then the Corona Theorem 4.3(a1) holds for A, AR, A+ L1 and AR + L1(R;R) (for this n).

The above also holds with (a1), M, L1, L1(R;R) and iR replaced by (a2), M+, L1
+,

L1(R+;R) and C+, respectively.

Proof. The first two claims follow from Lemmata 7.3 and 4.1 and n-fullness. Then the corona
claim follows from Theorem 4.3 (applied toM and forM+L1). The other cases are analogous
(Theorem 4.5). ¤

By polynomials of atoms we mean finite linear combinations of δr (r ∈ R). The Laplace
transform of a polynomial of atoms is of the form

∑n
k=1 ake−·rk , and so entire.



26 KALLE MIKKOLA AND AMOL SASANE

We denote M (respectively, M+) by (M)K (respectively, (M+)K) if K = C. Note that
K+L1(R;K) = (Cδ0 +L1)K. Next we show that the “finite” zeros of an element of M+L1 on
iR or of an element of (M++L1

+)n on C+ can be removed by an arbitrarily small perturbation.

Lemma 7.5. If F−1F ∈ (M)K is a polynomial of atoms, f ∈ FL1(R;K), and ε > 0, then
there exists g ∈ K1 + FL1(R;K) such that ‖g‖ < ε and F + f + g has no zeros on iR.

If n ≥ 2, F ∈ F(M+)n
K, F−1F2 is a polynomial of atoms, f ∈ FL1(R+;K)n, and ε > 0,

then there exists c ∈ R, h ∈ FL1(R+;K) such that ‖(c, h)‖ < ε and F + f + g has no zeros
on C+, where g := (c, h, 0, · · · , 0).

Proof. By density, in 1◦ and 2◦ we can replace f by ŵ, where w is continuous with compact
support (in the end, set g := c + ŵ − f) so that f becomes entire; similarly, replace f2 by ŵ
in 3◦.

1◦ Case K = C, F−1F ∈ M. The set E := (F + f)[iR] ⊂ C has zero measure, by
Lemma A.2 (because F and f are holomorphic, hence C1). Pick any c ∈ −Ec such
that F + f + c 6= 0 on iR.

2◦ Case K = R, F−1F ∈ (M)R. Now f(ir) =
∫
R e−irtw(t) dt for some w ∈ C(R;R) with

compact support. Moreover, F (z) =
∑m

k=1 ake−zTk for some m, ak, Tk. Therefore,

G(r) := − Im(F + f)(ir) =
m∑

k=1

ak sin rTk +
∫

R
w(t) sin rt dt (r ∈ R).

Since G is the restriction to R of an entire function, the zeros of G are isolated. So
Im(F + f) has a countable number of zeros on iR, that is, E := (F + f)[iR] ∩ R is
countable. Let −c ∈ (−ε, ε) \ E. Then F + f + c has no zeros on iR.

3◦ Case F−1F ∈ M+, K = C or K = R. Since F2 + f2 is holomorphic, the set Z :=
{z ∈ C+ : (F2 + f2)(z) = 0} is countable. Let E := (F1 + f1)[Z], and −c ∈ (−ε, ε) \E.
Then F1 + f1 + c has no zeros on Z, hence F + f +(c, 0, 0, · · · , 0) has no zeros on C+.

¤

In Lemma 7.5, the function F + f + g might still have zeros at some other points of the
maximal ideal space (of some relevant algebra, such asM+L1). However, that cannot happen
if F is unimodular, by Lemma 7.3.

In our examples of algebras A ⊂M, the polynomials of atoms contained in A are dense in
A, so the following proposition can be applied. This shows that enlarging A by L1 functions
does not increase tsrA.

Theorem 7.6. Assume that A is a Banach subalgebra5 of M and that the polynomials of
atoms contained in A are dense in A.

Then tsr(A+ L1(R)) = tsrA. If A ⊂M+, then tsr(A+ L1(R+)) = max{tsrA, 2}.
Assume, instead, that A is a Banach subalgebra of MR, and that the polynomials of atoms

contained in A are dense in A.
Then tsr(A+ L1(R;R)) = tsrA. If A ⊂M+R, then tsr(A+ L1(R+;R)) = max{tsrA, 2}.

Proof.
0◦ If n := tsr(A + L1), µ ∈ An and ε > 0, then ε > ‖µ′ + f − µ‖ = ‖µ′ − µ‖ + ‖f‖ for

some µ′ + f ∈ Un(A+ L1); by the proof of Lemma 4.1, then µ′ ∈ Un(A), hence then

5That is, A is a closed subalgebra of M with the same norm.
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tsrA ≤ n. Thus, tsrA ≤ tsr(A+L1). Similarly, we get the other four “≥” signs (use,
e.g., Lemma 5.11 for the two ≥ 2 results).

1◦ The claim tsr(A+ L1(R)) ≤ tsrA. Set n := tsrA. Let F ∈ FAn, f ∈ (FL1)n, ε > 0
be given. Define FA′ := F(A + L1). We shall show that F + f ∈ Un(FA′) (and
so tsrFA′ ≤ n). Since tsrA ≤ n, by density we can assume that F ∈ Un (that is,
G · F = 1 for some G ∈ FAn); we can simultaneously assume that F is a polynomial
of atoms, by density and Lemma 3.4 (and n-fullness, if A is not complete).

By Lemma 7.5, there exists g ∈ (FA′)n such that F + f + g has no zeros on iR.
From Lemma 7.3, it follows that F + f + g ∈ Un(A+ L1).

2◦ The claim tsr(A+ L1(R;R)) ≤ tsrA. The above proof still applies.
3◦ The claims tsr(A+L1(R+)) ≤ max{tsrA, 2} and tsr(A+L1(R+;R)) ≤ max{tsrA, 2}.

Let n := max{tsrA, 2} and work as in 1◦ (recall Lemma 3.1).
¤

Almost analogous results hold for Bass stable ranks as well.

Theorem 7.7. Assume that A is a Banach subalgebra of M, and that the polynomials of
atoms contained in A are dense in A.

Then bsr(A+ L1(R)) = bsrA. If A ⊂M+, then bsr(A+ L1(R+)) = bsrA.
Assume, instead, that A is a Banach subalgebra of MR, and that the polynomials of atoms

contained in A are dense in A.
Then bsr(A+ L1(R;R)) = bsrA. If A ⊂M+R, then bsr(A+ L1(R+;R)) = max{bsrA, 2}.

Proof.
0◦ We have bsr(A + L1) ≥ max{bsrA, bsrCδ0 + L1}, by Lemma 3.9. Therefore, only

bsr(A+L1) ≤ bsrA needs to be proved. Similarly, from Corollary 5.22 it follows that
when A ⊂ M+, we have bsr(A + L1

+) ≥ max{bsrA,bsrCδ0 + L1
+} = max{bsrA, 2},

so also then only the converses need to be proved. Analogous claims hold for the real
cases too.

1◦ We prove that bsr(A + L1(R)) ≤ bsrA. Set n := bsrA, FA′ := F(A + L1(R)). Let
F ∈ FAn, f ∈ FL1(R)n, G ∈ FA and g ∈ FL1(R) be such that

(a, b) := (F + f, G + g) ∈ Un+1(FA′).
It suffices to find H + h ∈ F(A+ L1(R))n such that a + b(H + h) ∈ FUn(A+ L1(R)).

By Lemma 7.3, (F, G) ∈ Un+1(FA). As bsrA ≤ n, there exists H ∈ FAn such
that w := F + GH ∈ Un(FA). Set v := a + bH = w + f + gH ∈ FAn. Then
(v, b) ∈ Un+1(FA′), by Lemma 3.10. If f ′ := f + gH, then v = w + f ′. From
Lemma 7.3, it follows that (v, bφ) ∈ Un+1(FA′), where φ(z) := (1 + z)−1. Since
FA′ is commutative, this means that there exist w′ + g′ ∈ (FA′)n (with w′ ∈ FAn,
g′ ∈ FL1(R)n) and b′ ∈ FA′ such that 1 = v · (w′ + g′) + bφb′. As φ ∈ FL1, this
implies that w · w′ = 1, by (the proof of) Lemma 4.1, and so w′ ∈ Un(FA).

Let F−1u ∈ Un(A) be a polynomial of atoms (we can have u arbitrarily close to
w′). By Lemma 7.5, there exists g′′ ∈ (C1 + FL1(R))n such that u + g′′ is arbitrarily
close to u+g′ but has no zeros, and so x := u+g′′ ∈ Un(FA′), from Lemma 7.3. With
x sufficiently close to w′ + g′ we have U1(FA′) 3 v · x + bφb′ =: y. Pick x′ ∈ Un(FA′)
such that x′ · x = 1. Set h := φb′x′. Then

(v + bh) · xy−1 = (v · x + bφb′x′ · x)y−1 = yy−1 = 1,
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and so v + bh ∈ Un(FA′). But v + bh = a + b(H + h) and H + h ∈ (FA′)n. Since
(a, b) ∈ Un+1(FA′) was arbitrary, bsrFA′ ≤ n.

2◦ Part 1◦, mutatis mutandis, also establishes the inequalities bsr(A+L1(R;R)) ≤ bsrA
and bsr(A+L1(R+;K)) ≤ n for n := max{bsrA, 2}, under corresponding assumptions.
Thus it remains to assume that A ⊂M+ and bsrA = 1 and to show that bsrA′ = 1,
where A′ := A+ L1(R+).

To that end, we work as in 1◦ with n := 1 to observe that (v, bφ) ∈ U2(FA′), where
v = w + f ′ (but we cannot apply Lemma 7.5). Note that Cδ0 + L1

+ ⊂ A′. By Lemma
3.10, we have (1 + w−1f ′, bφ) ∈ U2(FA′). But (1 + w−1f ′, bφ) ∈ (C + FL1(R+))2.
Apply Lemma 7.3 to A′ and to Cδ0 + L1(R+) to get that (1 + w−1f ′, bφ) ∈ U2(C +
FL1(R+)).

Since bsr(Cδ0 + L1
+) = 1, by Corollary 5.22, there exists h0 ∈ FCδ0 + L1

+ such
that x := 1 + w−1f ′ + bφh0 ∈ FU1(Cδ0 + L1

+). So (w + f ′ + bφh0w)w−1x−1 = 1. If
h := φh0w, then v + bh ∈ U1. Hence bsrA′ ≤ 1, as in 1◦.

¤

Remark 7.8. Instead of A being a Banach subalgebra of M, in Theorems 7.6 and 7.7 it
suffices to assume that A is a topological subring of M (with the inherited or even weaker
topology) and that Un(A) is open for every n ≥ 1 (this last condition is satisfied if A is n-full
in some Banach subalgebra of M or of MR).

(Use [37, Theorem 4] instead of Lemma 3.9 in the proof of Theorem 7.7.)
From Theorems 7.6 and 7.7 and Corollaries 5.14 and 5.17, we get the following.

Corollary 7.9. We have bsr(M(n) + L1) = bsrM(n) = bn/2c + 1 = tsr(M(n) + L1) =
tsrM(n), bsr(M(n) + L1)R = bsr(M(n))R = bn/2c + 1 = tsr(M(n) + L1)R = tsr(M(n))R,
and bsr(M(n+)

+ + L1
+) = bsrM(n+)

+ = bn/2c + 1, tsr(M(n+)
+ + L1

+) = tsrM(n+)
+ = n + 1,

bsr(M(n+)
+ + L1

+)R = bsr(M(n+)
+ )R = n + 1 = tsr(M(n+)

+ + L1
+)R = tsr(M(n+)

+ )R.

Now we have proved our main theorem.

Proof of Theorem 1.2: The bsr and tsr results on C(Tn), `1(Zn), andM(n) are from Corollary
5.14, those on A(Dn), `1(Nn), and M(n+)

+ are from Corollary 5.17, those on Cδ0 + L1 from
Corollary 5.21, and those on Cδ0 + L1

+ from Corollary 5.22.

The results on M(n) + L1 and M(n+)
+ + L1

+ are from Corollary 7.9. All “∞” entries are
from Corollaries 6.3 and 6.4 (with Proposition 3.2). ¤

As one observes from the proofs, many of our results on M also hold for AP and for the
classes in between. Indeed, in many results one can replace M by A and M+ by A ∩ AP+

if M ⊂ A ⊂ AP, and A is a Banach algebra and a subalgebra of AP, and the sup-norm is
continuous on A.

8. Discrete measures whose supports lie on S ⊂ R
Let S be an additive subgroup of R (that is, 0 ∈ S = S − S ⊂ R). Then `1(S) and

`1(S ∩ R+) are closed subalgebras of `1(R). They are obviously isometrically isomorphic to
M(S) and MS∩R+ (through `1(S) 3 a 7→ ∑

s∈S asδs ∈M(S)), where

(16) M(S) := {µ ∈M : |µ|(R \ S) = 0},
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the complex Banach algebra of discrete measures on S. If µ ∈ Mn, then we set µS :=∑
r∈S µ({r})δr ∈ Mn

S (note that µ =
∑

r∈R µ({r})δr). We also set M(S)
+ := M(S) ∩M+ =

MS∩R+ . The algebra M(S) was denoted by APWS in [24].
In (the corona theorem) Proposition 8.2 we show that iR (respectively, C+) is dense in the

maximal ideal space of M(S) (respectively, M(S)
+ ). In Theorem 8.1 we compute the stable

ranks of these algebras. Analogous results for the algebras APS and APS
+, the closures of

FM(S) and FM(S)
+ under the supremum norm, are given in Corollary 8.3. As a special case

we obtain corresponding results for M(n)
+ := Mn ∩M+, which is isomorphic to `1(E), where

E := {α ∈ Zn : α · T ≥ 0}.
But first we present the main result of this section. Here we show, for example, that

bsrM(S) = bsrMn = bn/2c+ 1, where n := dimQ S (the Q-dimension of the Q-vector space
S, possibly infinite).

Theorem 8.1. Let S be an additive subgroup of R. Let n := dimQ S. Then

bn/2c+ 1 = bsrM(S) = bsr(M(S))R = tsrM(S) = tsr(M(S))R,

and bn/2c+1 ≤ bsrM(S)
+ ≤ tsrM(S)

+ ≤ tsrM(n)
+ ≤ b(n+1)/2c+1. In particular, if n = 2k ≥

2, k ∈ N, then bsrM(S)
+ = tsrM(S)

+ = k+1 = n/2+1. Moreover, 2 = tsrM(S)
+ = bsr(M(S)

+ )R
if n = 1. The above also holds with (M(S)

+ )R in place of M(S)
+ .

The proof is given at the end of this section. Note that n does not characterize S; for
example, we have dimQ S = 1 for S equal to Q, πZ or spanZ{7−k3−j : k, j ∈ N}.

Recall from Theorems 7.7 and 7.6 that bsr(M(S) + L1) = bsrM(S), tsr(M(S) + L1) =
tsrM(S), bsr(M(S)

+ + L1
+) = bsrM(S)

+ etc.
Next we establish the corona theorem for M(S), M(S)

+ , (M(S))R and (M(S)
+ )R.

Proposition 8.2. Let µ ∈ (M(S))n, where S is as above. We have µ ∈ Un(M) iff µ ∈
Un(M(S)).

In fact, if ν ∈Mn and ν ·µ = δ0, then νS ·µ = δ0 (even (Re νS) ·µ = δ0 if µ is real-valued;
note that Re νS ∈M(S)).

Thus, µ ∈ Un(M+) ⇔ µ ∈ Un(M(S)
+ ), and if µ is real-valued, then the left inverse can

additionally be taken real-valued.

Proof. The first claim follows from the second, which we prove below. Let s ∈ S, r ∈ R.
Then r ∈ S ⇔ r + s ∈ S, and so for any µ ∈M(S) \ {0} we have r 6∈ S ⇔ (δr ∗µ)S = 0. Since
δ0 ∈ M(S), we conclude that if µ, ν ∈ Mn and ν · µ = δ0, then νS · µ = δ0. If µ = Re µ, then
trivially (Re νS · µ) = δ0.

The real claims follow by symmetrization (Lemma 4.4). ¤

The corona theorem for M(S)
+ was established already in [24, Theorem 2.4], with an upper

bound for the left inverse.
From Proposition 8.2, we have Un(M(S)) = Mn

S ∩Un(M), so M(S) is n-full in M, for any
n ≥ 1. Therefore, iR (respectively, C+) is dense also in the maximal ideal space of M(S) +L1

(respectively, M(S)
+ + L1

+), by Corollary 7.4.
Now we can establish the corona theorems and compute the stable ranks of corresponding

algebras of almost periodic functions. Denote by APS and APS
+ the closures of FM(S) and
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FM(S)
+ , respectively, under the supremum norm. Thus, for example, APS

+ is the closure in
H∞ of the linear combinations of the functions e−·t, t ∈ S ∩ R+.

Corollary 8.3 (APS). The set iR (respectively, C+) is dense in the maximal ideal space of
APS (respectively, of APS

+).
Thus, the corona condition infiR |f | > 0 (respectively, infC+ |f | > 0) is necessary and

sufficient for f ∈ Un(A), when f ∈ An, where A equals APS or (APS)R (respectively, APS
+

or (APS
+)R).

Theorem 8.1 also holds with APS (respectively, APS
+) in place of M(S) (respectively, M(S)

+ ).

Proof of Corollary 8.3:
1◦ The density of C+ in X(APS

+) is [24, Theorem 2.3] (based on [1]).
2◦ Assume that f ∈ (APS)n and ε := infiR |f | > 0. Let FM(S)n 3 gk → f , as k → ∞.

If n = 1, then g−1
k → f−1 in AP. Hence f−1 ∈ APS , that is, f ∈ Un(APS).

3◦ For general n, we have |f |2 = f̄ ·f ∈ APS (because eirt = eir(−t), and −t ∈ S if t ∈ S).
Thus |f |−2 ∈ APS , by 3◦, and so |f |−2f̄ ∈ (APS)n. As |f |−2f̄ · f = 1, it follows that
f ∈ Un(APS) in this case as well.

4◦ From Lemma 4.4 we see that the corona conditions also apply to (APS)R and to
(APS

+)R.
5◦ By Corollary 3.8 (with f := F ; fullness from 4◦), it follows that the bounds of the bsr

and tsr of M(S) (respectively, M(S)
+ , (M(S))R, (M(S)

+ )R) in Theorem 8.1 also apply
to APS (respectively, APS

+, (APS)R, (APS
+)R). (To get tsrAPS

+ = 2 in the case n = 1,
use the proof of Theorem 8.1.)

¤
Next we study an important special case of the algebraM(S)

+ , namely M(n)
+ := M(n)∩M+.

Corresponding results are then used to prove Theorem 8.1.
Recall that T1, T2, . . . , Tn > 0 are Q-independent. Obviously, M(n+)

+ ⊂ M(n)
+ := M(n) ∩

M+, and the inclusion is strict iff n ≥ 2 (for example, δT2 − δT1 ∈ M(n)
+ \ M(n+)

+ ). If
T := (T1, . . . , Tn) and E := {α ∈ Zn : α · T ≥ 0}, then

(17) `1(E) 3 a 7→
∑

α∈E

aαδα
T , =

∑

α∈E

aαδα·T

is an isometric isomorphism of `1(E) onto M(n)
+ . Its restriction to `1(Nn) is the isomorphism

(4) of `1(Nn) onto M(n+)
+ . If S := ZT1 + ZT2 + · · · + ZTn ⊂ R, then M(n)

+ = M(S)
+ . Hence

M(n)
+ is also isometrically isomorphic to `1(S). By Proposition 8.2, it follows that C+ is

dense in X(M(n)
+ ); recall that the same is not true for X(M(n+)

+ ) (for n ≥ 2). Note also
that FM(n)

+ is the closure in FM+ of the algebra generated by the functions e−·t, where
0 ≤ t = m1T1 + · · ·+ mnTn for some m1, . . . ,mn ∈ Z.

Lemma 8.4 (X(M(n)
+ )). The maximal ideal space of `1(E) (or of M(n)

+ ) equals

Xn := {z ∈ Dn : |zk|1/Tk = |z1|1/T1 ∀k ≤ n}
through the Gelfand transform `1(E) 3 a 7→ â ∈ C(Xn), where â(z) :=

∑
α∈E aαzα.

Here â(0) := a(0,...,0); this obviously makes â continuous on Xn.
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Proof. It is easy to see that (̂ab) = âb̂, and so Xn is contained in the maximal ideal space. Its
topology is stronger than that inherited from Dn (which is the maximal ideal space of `1(Nn)),
since â must be continuous for every a ∈ `1(Nn). On the other hand, for every a ∈ `1(E), the
transform â is continuous on Xn in the inherited topology, and so the two coincide. But Xn

is closed, hence we only need to show that it is dense in the maximal ideal space.
Set φ(s) := e−Ts. Then φ[C+] is a dense subset of Xn (in the same way as φ[iR] is a dense

subset of Tn, by Kronecker’s Theorem). Let k ≥ 1 and a ∈ `1(E)k. With f := â ◦ φ, we
have f(s) =

∑
α∈E aαe−sT ·α, and so f ∈ Uk(FM(n)

+ ) iff infC+ |f | > 0, by [24, Theorem 2.3],
or equivalently, iff infXn |â| > 0. By Lemma 4.2, it follows that Xn is dense in the maximal
ideal space X(M(n)

+ ). ¤
Using the above result on the maximal ideal space, we can now compute the stable ranks

of these algebras. Note that this is a special case of Theorem 8.1.

Lemma 8.5 (bsrM(n)
+ ). Let k, n ∈ N. Let A denote M(n)

+ or (M(n)
+ )R.

(1) If n = 2k ≥ 2, then bsrA = tsrA = k + 1 = n/2 + 1.
(2) If n = 2k + 1, then bn/2c+ 1 = k + 1 ≤ bsrA ≤ tsrA ≤ k + 2 = b(n + 1)/2c+ 1.

Proof. Let A = FM(n)
+ or A = F(M(n)

+ )R. By Corollary 6.3 we have bn/2c + 1 ≤ bsrA, so
we only have to show that b(n + 1)/2c+ 1 ≥ tsrA.

If k := b(n+1)/2c+1, then 2k > n+1. Let f ∈ Ak and ε > 0 be given. We shall construct
G ∈ Uk(A) such that ‖f −G‖A < ε.

Pick a ∈ `1(E)k corresponding to F−1f (see (17)). By density, we can assume that a has
a finite support. It follows that â is holomorphic Cn∗ → Ck, where C∗ := C \ {0}.

Set bj(z) := Im âj(z)/ Im zj , F := (Re â, b) ∈ C(V ;R2k), where

V := {z ∈ Cn : |zj |1/Tj = |z1|1/T1 ∀j ≤ n}.
Since V is n + 1-dimensional, by Lemma A.2 W := R2k \ F [Xn \ {0}] is dense. Indeed,
define φ ∈ C∞(Rn × (0,∞);R2k) by φ := (xT1/T1

n+1 eix1 , x
T2/T1

n+1 eix2 , . . . , x
Tn/T1

n+1 eixn), and set
A := [0, 2π)n × (0, 1]. Then φ(A) = Xn \ {0}, and F ◦ φ is differentiable (even C∞). Hence
F [Xn \ {0}] = (F ◦ φ)[A] has measure zero, by Lemma A.2, and so W is dense. Pick r, t ∈
Rk \ {â(0)} such that (r; t) ∈ W . If ĉ(z) := â(z)− r − (t1z1, . . . , tnzn) z ∈ Xn, then ĉ(0) =
â(0)−r 6= 0, and for z ∈ Xn\{0} we have (Re ĉj(z), Im ĉj(z)/ Im zj) = (Re â(z)j−rj , bj(z)−tj),
so ĉj(z) = 0 ∀j ≤ k would imply that F (z) = (r; t) ∈ W , a contradiction. Thus ĉ has no zeros
on Xn, and so c ∈ Uk(`1(E)), from Lemma 8.4. Since we can have (r, t) arbitrarily small, we
can have ‖a− c‖`1(E) < ε, that is, ‖f − g‖Ak < ε, where g ∈ Uk(A) equals

∑
α cαe−·

Pn
l=1 Tlαl

(that is, g is the Laplace transform of the right-hand-side of (17) with c in place of a). ¤
We formulate here the remark relevant to Mortini’s question (see Remark 6.5).

Remark 8.6 (APn
+). Denote by APn

+ ⊂ AP+ the closure of FM(n)
+ in AP. It obviously

equals APS , the closure in H∞(C+) of the algebra generated by the functions e−·t, where
0 ≤ t = m1T1 + · · ·+ mnTn for some m1, . . . ,mn ∈ Z. Here S := ZT1 + · · ·+ ZT1.

By Corollary 8.3, APn
+ is full in H∞(C+) and bsr AP2k

+ = k + 1 for k = 1, 2, . . . .

Proof of Theorem 8.1: The case n = 0 is trivial, so assume that n ≥ 1.
1◦ We show that bn/2c+1 ≤ bsrA. SinceQ-dimS = n, and S = S−S ⊂ R, there existQ-

independent T1, T2, . . . , Tn ⊂ S∩R+. Let S′ be the set of (finite) Z-linear combinations
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of T1, . . . , Tn. Since S is a subgroup of R, we have S′ ⊂ S, henceM(n) = MS′ ⊂M(S);
similarly, (M(n))R ⊂ (M(S))R, M(n+)

+ ⊂M(S)
+ , and (M(n+)

+ )R ⊂ (M(S)
+ )R.

By Corollary 6.3, this implies that bn/2c + 1 ≤ bsrA, where A equals (M(S)
+ )R,

M(S)
+ , (M(S))R, or M(S) (since (M(S)

+ )R ⊂ A and FA ⊂M ⊂ AP).
(If n = ∞, then apply the above for every finite n to observe that bsrA = ∞ and

hence tsrA = ∞. Thus, we may assume that n < ∞.)
2◦ We have tsrM(S)

+ ≤ tsrM(n)
+ =: m. Let f ∈ (M(S)

+ )m, ε > 0. By density, we
can assume that the support A of f is finite. Define T1, . . . , Tn by Lemma 6.1 (if
l := Q-dimA < n, pick Tl+1, . . . , Tn > 0 so as to get a Q-basis of S). Since A ⊂
ZT1 + . . . + ZTn ⊂ S and A ⊂ R+, we have f ∈ (M(n)

+ )m and M(n)
+ ⊂M(S)

+ .
Since tsrM(n)

+ = m, there exists g ∈ Um(M(n)
+ ) such that ‖f − g‖M < ε. But

Um(M(n)
+ ) ⊂ Um(M(S)

+ ), because M(n)
+ ⊂ M(S)

+ , and so g ∈ Um(M(S)
+ ). As f and ε

were arbitrary, tsrM(S)
+ ≤ m.

3◦ As in 2◦, we see that tsr(M(S)
+ )R ≤ tsr(M(n)

+ )R, tsrM(S) ≤ tsrM(n), and tsr(M(S))R ≤
tsr(M(n))R. This and the known tsr results for the latter algebras (Corollary 5.14 and
Lemma 8.5) and the fact that bsrA ≤ tsrA (Proposition 3.2) yield Theorem 8.1 except
for the claims on the case n = 1.

4◦ Assume that n = 1. Let 0 < t ∈ S. If µ := δt − e−1δ0, then µ̂(s) = e−ts − e−1,
hence µ̂(1/t) = 0. By Lemma 5.11, tsrM(S)

+ ≥ 2, because µ ∈ M(S)
+ . By the above,

tsrM(S)
+ ≤ b(2 + 1)/2c+ 1 = 2, and so tsrM(S)

+ = 2. Similarly, tsr(M(S)
+ )R = 2.

Finally, with g(s) := (e−ts − 1)(e−ts − 1/3), f(s) := e−ts − 1/2, we have that
(f, g) ∈ FU2((M(S)

+ )R). Given h ∈ F(M(S)
+ )R, the function f (hence also f + hg) has

different signs at the zeros of g, and so by the mean-value theorem, f +hg, being real-
valued, has a zero on R+. Consequently (f, g) is not reducible, and so bsr(M(S)

+ )R ≥ 2.
Thus bsr(M(S)

+ )R = 2.

¤

9. Exponentially stable subalgebras

In this section we define and study exponentially stable measures and functions and expo-
nentially (actually “power”) stable `1 sequences. These classes were introduced below The-
orem 1.2. The impulse responses or transfer functions of “exponentially stable” continuous-
time systems or of “power stable” discrete-time systems are often of one of these forms. This
is why such classes are often studied in the literature (including the Callier–Desoer class of
fractions of elements of (M+ + L1(R+))exp [4]).

The main result of this section is Theorem 9.4, which states that all results of Table 1 hold
also with A (or AR) replaced by the corresponding exponential subalgebra. Analogous results
on M(S), M(S)

+ , APS , M(n)
+ etc. are given in Theorem 9.6. We also study unimodularity and

other properties in all these algebras. Actually, all results of §7 and §8 hold for the exponential
case too.

The algebra FMexp
+ consists of functions f̂(ω + ·), where f̂ ∈ FM+ and ω > 0. We

generalize this as follows.
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Definition 9.1 (Aexp). We write f ∈ (M+ L1)exp if eω·f ∈M+ L1 for some ω > 0 and for
some ω < 0. If A is a subalgebra of M+ L1, then we set

Aexp := A ∩ (M+ L1)exp, Aexp
R := AR ∩ (M+ L1)exp.

We write a ∈ `1,exp(R) if
∑

r∈R arδr ∈Mexp, or equivalently, if (qrar)r∈R ∈ `1(R) for some
q > 1 and for some q ∈ (0, 1); similarly for the complex and real subclasses of `1(R). We write
a ∈ `1,exp(Zn) if

∑
α∈Zn aαδα·T ∈ Mexp (equivalently, ∈ M(n),exp); similarly for `1,exp(Nn)

and their real subclasses. We use the same norms as in the original algebras.

In the literature, Aexp is sometimes denoted by A−. All these exponential algebras are
obviously subalgebras of the original ones. Observe that f ∈ (Cδ0 +L1)exp

+ iff eω·f ∈ Cδ0 +L1
+

for some ω > 0, that is, iff f = fa + cδ0, where c ∈ C and eω·f ∈ L1(R+) for some ω > 0. An
analogous claim holds for any of the other causal (support on R+ or on N) algebras.

Remark 9.2. Remark 2.1 holds for these exponential classes too; in particular the canon-
ical isomorphism (4) of `1(Nn) onto M(n+)

+ maps `1,exp(Nn) onto M(n+),exp
+ . Analogously,

`1,exp(Zn) ≈M(n),exp.
We have a ∈ `1,exp(R) iff (qrar)r∈R ∈ `1(R) for some q > 1 and for some q ∈ (0, 1).

Moreover, `1,exp(Z) = `1,exp(R) ∩ `1(Z), `1,exp(Z;R) = `1,exp(Z) ∪ `1(Z;R), etc. Furthermore,
a ∈ `1,exp(Nn) iff if (q|α|aα)α∈Nn) ∈ `1(Nn) for some q > 1.

Thus, `1,exp(Nn) is independent of T := (T1, T2, . . . , Tn); the same is not true for `1,exp(Zn).

Proof. The first paragraph is a direct consequence of Definition 9.1. For f =
∑

r∈R arδr the
condition eω·f ∈ M means that

∑
r∈R eωr|ar| < ∞, that is, that

∑
r∈R qr|ar| < ∞, where

q := eω. Obviously, we can have q > 1 (respectively, q < 1) iff we can have ω > 0 (respectively,
ω < 0). The claims on `1,exp(Z) and `1,exp(Z;R) obviously follow.

If f =
∑

α∈Nn aαδα·T , then

(18) ‖q|·|1 a·‖`1(Nn) =
∑

α∈Nn

|aα|eωT1
Pn

k=1 αk ≤
∑

α∈Nn

|aα|eω(α·T ) ≤ ‖q|·|n a·‖`1(Nn)

when ω > 0, where qk := eωTk , |α| :=
∑n

k=1 αk. Thus, (18) is finite for some ω > 0
iff ‖q|·|a·‖`1(Nn) < ∞ for some q > 1. Equivalently, f ∈ Mexp (hence f ∈ M(n+),exp

+ ) iff
a ∈ `1,exp(Nn). ¤

By Aexp(Dn) = H∞,exp(Dn) (respectively, Cexp(Tn)) we denote the algebra of functions
that are holomorphic on a neighborhood of Dn (respectively, of Tn). Let S ⊂ R. By APexp

S
we denote the functions that are uniform limits of linear combinations of e−r· (r ∈ S) on
{−ω ≤ Re z ≤ ω} for some ω > 0. We set (AP+

S )exp := AP+
S∩R+

, APexp := APexp
R , APexp

+ :=
APexp

R+
. Obviously, APexp

+ consists of all functions of the form f(· + ω) (f ∈ AP+, ω > 0).
Moreover, FMexp ⊂ APexp and APexp

+ = AP+ ∩APexp.
Next we show that left-invertibility (that is, unimodularity) in an algebra is equivalent to

left-invertibility in the corresponding exponential algebra. For example, if f ∈ (Mexp)n and
g · f = 1 for some g ∈Mn, then g · f = 1 for some g ∈ (Mexp)n.

Theorem 9.3 (Exponential Corona Theorem). Any exponential algebra (say, Aexp) defined
above is dense and full in the corresponding original algebra (say, A) except that H∞,exp is
not dense in H∞. Consequently,

(19) Un(Aexp) = (Aexp)n ∩Un(A), and Un(Aexp
R ) = (Aexp

R )n ∩Un(A).
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In particular, Corona Theorems 4.3 and 4.5 hold even if we replace each algebra by the
corresponding exponential algebra.

By “defined above” in Theorem 9.3 we mean that Aexp has explicitly been defined above
(in this section) or that it is the exponential algebra of a subalgebra ofM+L1 or of (M+L1)R
that has been defined in the above sections. Thus, A can be M(n), M(n+)

+ , M(n)
+ , M(S) or

M(S)
+ , or such an algebra +L1 or +L1

+ (depending on causality), or any of the algebras of
§1–2, or the real algebra corresponding to any of these algebras. However, Theorem 9.3 holds
also for those typical exponential subalgebras that were not defined above.

We note that for A = M+ + L1
+ and n = 2 the corona theorem for Aexp was established in

[4].
If A is an n-full subalgebra of some other algebra A′ (e.g., of M + L1), then, obviously,

Un(A) can be replaced by Un(A′) in (19).

Proof of Theorem 9.3: Density follows from Lemma A.1. Below we prove fullness, that is,
that Aexp∩U1(A) = U1(Aexp) (only “⊂” needs to be proved). Then (19) follows from Lemma
3.5 (with AR in place of the latter A, hence as is too), and (19) implies the modified corona
theorems.

1◦ If f ∈ Aexp(Dn) ∩ U1(A(Dn)), then |f | > ε > 0 on D, hence on a neighborhood of D,
hence then f−1 ∈ Aexp(Dn). Since H∞,exp(Dn) = Aexp(Dn), this proves the fullness
of H∞,exp(Dn) in H∞(Dn) too. The proof for C(Tn) is analogous.

2◦ Assume that A = APS . Let pn → f uniformly on a strip Eω := {−ω ≤ Re z ≤ ω} as
in the definition of APexp

S . If f ∈ U1(APS), then, by uniform continuity, there exist
r, ε > 0 such that |f | > ε on Er. Consequently, FMexp 3 p−1

n → f−1 uniformly on
Er, hence f−1 ∈ APexp

S .
3◦ Assume that A is a closed subalgebra of M + L1 with the same norm. Let f ∈
Aexp∩U1(A). The map α 7→ fα := e−α·f is continuous (−δ, δ) → A, by the Dominated
Convergence Theorem, for some δ > 0, and fα ∈ U1(A) (when δ is small enough, by
Lemma 3.4). For any such α, define gα ∈ A by gα ∗ fα = 1. Obviously, (gα)−α ∗
(fα)−α = 1, hence (gα)−α = g0. Consequently, g0 ∈ Aexp, so fα ∈ U1(Aexp).

4◦ For all `1,exp algebras we get the results from Remarks 9.2 and 2.1.

¤

Theorem 9.4 (bsrAexp). All results in Table 1 hold with Aexp in place of A.

Proof. By Corollary 3.8 and Theorem 9.3, we have bsrAexp ≤ bsrA ≤ tsrA = tsrAexp in
each case (also the real ones), so only bsrA ≤ bsrAexp needs to be proved (although in all
cases below save the last, bsrA = bsrAexp is proved directly).

For A(Dn)R and F`1(Nn) this follows from Corollary 5.4. For C(Tn), C(Tn)R, F`1(Zn) and
F`1(Zn;R) use Corollary 5.15. For A(Dn), A(Dn)R, F`1(Nn) and F`1(Nn;R) use Corollary
5.18.

From Lemma 5.20 we observe that Corollary 5.15 (respectively, 5.18) can be applied to
(the exponential subalgebras of) Cδ0 + L1 and Rδ0 + L1(R;R) (respectively, Cδ0 + L1

+ and
Rδ0+L1(R+;R)). Lemma 9.7 covers, among others, the (exponential versions of the) algebras
listed at the end of Corollary 6.3.

By Remark 9.2 we get the remaining `1 algebras. From Lemma 3.9 we get the remaining
algebras. ¤
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In particular, we have bsr(M+ + L1(R+))exp = ∞, so not all Callier–Desoer transfer func-
tions g/f can be reduced (strongly stabilized). However, when the pair (f, g) ∈ U2 happens
to lie in a nice subalgebra of F(M+ + L1(R+))exp, such as F(M(1+)

+ + L1(R+))exp, then it

can be reduced, since bsr(M(1+)
+ + L1(R+))exp = 1, by Theorem 9.4.

Lemma 9.5. All results in §7 hold even if we replace all algebras by their exponential subal-
gebras. Moreover, in Theorems 7.6 and 7.7, with the additional assumption that Un(Aexp) is
open in (Aexp)n, it suffices to make the replacements only in the conclusions.

Proof. This follows by making the corresponding changes in the proofs too (in the proof of
Lemma 7.1 we need the result bsr((Cδ0 + L1)exp

+ ) = 1; also some exponential corona results
are used). The only exception is Corollary 7.9, which is established in Theorem 9.4 (using
only the above part of this lemma). ¤

The analogy of Theorem 9.4 holds for the M(S) classes too.

Theorem 9.6. All results of §8 hold even if we replace all algebras by their exponential
subalgebras.

Thus, e.g., bsrM(S),exp
+ = tsrM(S),exp

+ = k + 1 when dimQ S = 2k.

Proof. The “maximal ideal space” (set of nonzero continuous homomorphisms) of a normed
algebra obviously equals that of its closure, so the first claim of Corollary 8.3 remains.

Corollary 3.8 (using Theorem 9.3) implies that bsrAexp ≤ bsrA ≤ tsrA = tsrAexp for
all algebras treated in §8. But bn/2c + 1 ≤ bsrAexp, by Lemma 9.7 and Corollary 6.3 (we
have M(n+),exp

+ ⊂ Aexp as in 1◦ of the proof of Theorem 8.1). The case n = 1 in Theorem
8.1 follows from 4◦ of the proof of Theorem 8.1. The rest is straightforward or follows from
Theorem 9.3. ¤

We used above the following result.

Lemma 9.7. Corollary 6.3 holds even if we replace F(M(n+)
+ )R by F(M(n+),exp

+ )R.
Corollary 5.10 holds even if we replace F`1(Nn;R) by F`1,exp(Nn;R).

As obvious from the proofs, instead of F(M(n+),exp
+ )R we could use above any other set

containing g′, f ′j (j = 1, . . . , k) and a left inverse of (f ′, g′).

Proof. By Remark 9.2, a : Nn → C is in `1,exp(Nn) iff â converges absolutely on a neighborhood
of Dn. The functions fj and g of Lemma 5.9 are of this form, so f1, . . . , fn, g ∈ F`1,exp(Nn) ∀j
(here m := n). This proves the latter claim in Lemma 9.7 (see the proof of Corollary 5.10).

The above implies that f ′1, . . . , f
′
n, g′ ∈ (M(2k+)

+ )exp (hence f ′1, . . . , f
′
n, g′ ∈ (M(2k+)

+ )exp
R ) in

Lemma 6.2, by the comment on the isomorphism (4) in Remark 9.2. Therefore, also the first
claim in Lemma 9.7 holds (see the proof of Corollary 6.3). ¤

We set H∞,exp(C+) := {f ∈ H∞(C+) : f(· − ω) ∈ H∞(C+) for some ω > 0}.
Proposition 9.8. We have bsrH∞,exp(C+) = 1, and bsrH∞,exp(C+)R = 2.

Proof. For any function h ∈ H∞(C+) and any number ω ∈ R we set hω := h(· + ω). If
(f, g) ∈ U2(H∞,exp(C+)), then (f−ω, g−ω) ∈ U2(H∞(C+)) for some ω > 0. But bsrH∞ = 1
[36], and so f−ω +hg−ω ∈ U1 for some h ∈ H∞(C+). Hence f +hωg ∈ U1(H∞,exp(C+)) (note
that hω ∈ H∞,exp(C+)). Consequently, bsrH∞,exp(C+) = 1.
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If g(s) = (s − 1)(s − 3)/(s + 1)2 and f(s) = (s − 2)/(s + 2), then f has different signs at
the zeros 1 and 3 of g. Hence (f, g) ∈ U2(H∞,exp(C+)R) is not reducible in H∞,exp(C+)R (see
the paragraph below Lemma 10.1). Thus bsrH∞,exp(C+)R ≥ 2.

That bsrH∞,exp(C+)R = 2 can be seen using the fact that bsrH∞,exp(C+)R = 2 [21]: just
modify the first part of the proof: assume that f ∈ H∞,exp(C+)2R and that g ∈ H∞,exp(C+)R
etc. ¤

Recall from Theorem 9.4 that bsrH∞,exp(Dn) = bn/2c + 1 and bsrH∞,exp(Dn)R = n + 1
(since H∞,exp(Dn) = Aexp(Dn)).

The reducible elements (f, g) ∈ U2(Aexp
R ) are characterized in Remark 10.6 for many of our

real exponential algebras Aexp
R .

10. Reducible elements of `1(N;R), Rδ0 + L1(R+;R), and other real algebras

A (coprime) pair (f, g) ∈ U2 is reducible iff f + hg ∈ U1 for some h. All of our real causal
algebras have bsr ≥ 2, which means that some coprime pairs are not reducible. Even worse,
as noted below 6.2, some pairs generated by two independent positive delays are not reducible
even in AP. However, in many real algebras, the coprime pairs that are reducible are exactly
those that have the “parity interlacing property” defined later below. That is the subject of
this subsection.

The half-plane algebra A(C+) is the sup-normed Banach algebra of those continuous func-
tions C+ ∪ {∞} → C that are holomorphic on C+. It is obviously isometrically isomorphic
to A(D) through the Cayley transform f(·) 7→ f((1− ·)/(1 + ·)).

Let (f, g) ∈ U2(A(C+)R). We say that (f, g) has the parity interlacing property if f has
the same sign at real zeros {r ∈ R+ ∪ {∞} : g(r) = 0} of g. An equivalent condition is
that f has an even number of zeros (counting multiplicities) between any real zeros of g.
Not all unimodular pairs are reducible (that is, bsrA(C+)R > 1), but the above property
characterizes reducible pairs, as shown in [41] (for A(D)) and restated below.

Lemma 10.1. A pair (f, g) ∈ U2(A(C+)R) is reducible iff f has the same sign at each zero
of g on R+ ∪ {+∞}.

So then f +hg ∈ U1 for some h ∈ A(C+)R. The necessity of the parity interlacing property
is obvious, because f + hg is real and nonzero on R+ and hence must have a constant sign.

One easily verifies that an element ofM++L1
+ or of `1(Nn) is real-valued iff its transform is

real-symmetric (f̂(z) = f̂(z)), so, for example, F(Rδ0 +L1(R+;R)) = F(Cδ0 +L1
+)∩A(C+)R.

Therefore, we get the following corollary.

Corollary 10.2. A pair (f, g) ∈ FU2(Rδ0 + L1(R+;R)) is reducible iff f has the same sign
at each zero of g on R+ ∪ {+∞}.
Proof. The necessity of the property follows as above. Now assume that (f, g) has the prop-
erty. By Lemma 10.1, there exists h ∈ A(C+)R such that f + gh ∈ U1(A(C+)R), that is,
infC+ |f + gh| > 0 (Theorem 4.5).

Since real-symmetric polynomials are dense in A(D)R (Lemma A.1), their Cayley trans-
forms (that is, real-symmetric rational A(C+)R functions) are dense in A(C+)R. Consequently,
infC+ |f + gh′| > 0 for some real-symmetric rational h′ ∈ A(C+)R. By Lemma 5.19 (and the
fact that F(Rδ0 + L1(R+;R)) consists of the real-symmetric elements of F(Cδ0 + L1

+)), we
have h′ ∈ F(Rδ0 + L1(R+;R)). But f + gh′ ∈ U1(FRδ0 + L1(R+;R)), from Theorem 4.5. ¤
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Corollary 10.3. A pair (f, g) ∈ FU2(`1(N;R)) is reducible iff f has the same sign at each
zero of g on [−1, 1].

Here F`1(N) can obviously be replaced by any full subring A ⊂ A(D) containing all poly-
nomials. The proof is analogous to that of Corollary 10.2 and hence omitted.

The isomorphism of Remark 2.1 extends Corollary 10.3 to (M(1+)
+ )R; we write this out

below. If µ =
∑∞

k=0 akδkT ∈ (M(1+)
+ )R, then obviously µ̂(r) = â(e−r) and µ̂(i/T + r) =

â(−e−r) for every r ≥ 0. By Remark 2.1, this and Corollary 10.3 imply the following.

Corollary 10.4. A pair (f, g) ∈ FU2((M(1+)
+ )R) is reducible iff f has the same sign at each

zero of g on R+ ∪ {+∞} ∪ (i/T + R+).

The part “∪(i/T + R+)” cannot be removed from the above corollary: set T := 1; for
f(s) = e−s, g(s) = e−2s − 1/4 the pair (f, g) ∈ U2 is not reducible although g has only one
zero on R+ ∪ {+∞}, because f has a different sign at the zero on i + R+.

Corollary 10.5. A pair (f, g) ∈ FU2((M(1+)
+ + L1

+)R) is reducible iff f has the same sign at
each zero of g on R+ ∪{+∞} and the discrete part of (f, g) is reducible (see Corollary 10.4).

Proof. As before, the parity interlacing property is necessary. By Lemma 4.1, also the latter
condition is necessary. Now assume that both conditions hold. Write f = fd +fa, g = gd +ga.
Since the discrete part (fd, gd) is reducible, we have w := fd + hdgd ∈ FU1((M(1+)

+ )R) for

some hd ∈ F(M(1+)
+ )R. Set F := w−1(f + hdg) = 1 + w−1(fa + hdga) ∈ F(Rδ0 + L1(R+;R)).

From Lemma 3.10, it follows that (F, g) ∈ U2, that is, (F, g) 6= 0 on C+ ∪ {∞} (Theorem
4.5). Hence (F, φg) ∈ U2, where φ(s) := 1/(s + 1) (because F (+∞) = 1). (By Lemma
5.19, φ ∈ F(Rδ0 + L1(R+;R)).) Set F ′ := F . Since w ∈ U1 has a constant sign p = ±1 on
R+ ∪ {+∞}, the sign of F on the finite real zeros of g (or of φg) equals p times that of f ,
that is, (F ′, φg) has the parity interlacing property. (Unless g(+∞) 6= 0 and g(R) = 0 for
some R ∈ (0,∞) and f and w have different signs at R; in this case set F ′ := −F instead;
then sgnF ′(+∞) = −1, which equals −p sgn f(R) = sgn F ′(R) and so (F ′, φg) again has this
property.) Thus F ′ + h0φg ∈ U1 for some h0 ∈ F(Rδ0 + L1(R+;R)), by 10.2. From Lemma
3.10, it follows that (f, g) is reducible (namely f+(hd+wh0φ)g ∈ U1 (or f+(hd−wh0φ)g ∈ U1

if F ′ = −F )). ¤
From the proofs (in particular from that of Corollary 10.2), we observe the following, which

can alternatively also be concluded by density (Lemma A.1).

Remark 10.6 (Aexp
R ). The element h such that f + hg ∈ U1 can be chosen to be rational in

Lemma 10.1 and in Corollary 10.2, a polynomial in Corollary 10.3, a finite sum
∑n

k=1 hne−·nT

in Corollary 10.4, and such a finite sum plus a rational function in Corollary 10.5.
Therefore, the algebras in Lemma 10.1 and in Corollaries 10.2–10.5 can be replaced by the

corresponding exponential algebras (defined in §9).

Proof. The first paragraph obviously holds.
Let then (f, g) ∈ U2(Aexp), where Aexp is the exponential form of the algebra in some of

the results. Since U1(Aexp) ⊂ U1(A), the corresponding parity interlacing property is still
necessary; by the first paragraph it is also sufficient for the existence of h ∈ Aexp such that
f + hg ∈ U1(Aexp). But f + hg ∈ U1(Aexp) iff f + hg ∈ U1(A), because Aexp is full in A, by
Theorem 9.3, so we are done. ¤
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A result for H∞
R , analogous to that in Lemma 10.1, is given in [40].

An example of extending this characterization to the matrix-valued case (with f rational
and F−1g a measure) is given in [32], or in the rational case also in [38, p. 118]. In these
results det f should have the same sign at all real zeros of g. We also mention that bsrAn×n =
b−(bsrA − 1)/nc + 1 for an arbitrary ring A [37, Theorem 3], and for a Banach algebra A
with a continuous involution, tsrAn×n = b(tsrA− 1)/nc+ 2; see [23, Theorem 6.1].

10.1. Control-theoretic consequences. The connection between Bass and topological sta-
ble ranks and different forms of stabilization of linear systems is best explained in [22], whose
results have raised the question of the stable ranks of many of the algebras treated in this
article. A wealthy background on the theme is provided by [38]. Therefore, here we mainly
make some supplementing observations.

Many of our algebras appear frequently in control theoretic literature, such as [38], [39]
(which treats `1(N), `1(N2), `1,exp(N), M+ + L1

+, and (M+ + L1(R+))exp), [4] and [22]; see,
e.g., [9] for many practical examples. In many cases, the transfer functions actually lie in (the
fields of fractions of) smaller algebras (than those studied in the references), which have lower
stable ranks and hence lead to more powerful results. This and the many bsr = ∞ results in
this article emphasize the importance the other algebras (e.g., in Table 1).

One of the motivations for reducing a coprime pair (f, g) ∈ U2(A), that is, for finding h ∈ A
such that f + hg is invertible, comes from control theory. Indeed, if A models stable transfer
functions and the transfer function of a system is given by g/f , then such a function h exists
iff the system can be strongly stabilized (stabilized by a stable controller, namely −h ∈ A).
[38] [22].

The advantages of strong stabilization are also explained in [38]. They include weaker
sensitivity to disturbances, better ability to track reference inputs, the possibility to use
the two-stage stabilization procedure, as well as applications in simultaneous stabilization,
which leads to better robustness against structural changes including nonlinearities and loss
of components. [38]

In continuous-time (respectively, discrete-time) applications, often A equals F(M+ + L1
+)

(respectively, F`1(N)) or some subset of it (possibly real, which motivates this section). If
bsrA = 1, then any two plants of same dimensions, admitting doubly coprime factorizations
(cf. Subsection 10.2 below), can be stabilized by a controller [22, Corollary 6.7]. As the proof
(whose origin is in [38]) of that result shows, this simultaneous stabilization can be reduced
to a strong stabilization problem in the same algebra, so also the results of this section apply
to simultaneous stabilization.

Some control-theoretic applications of other bsr and tsr results (for example, of bsr ≤ 2
or of tsr ≤ 2) are explained in [22], where it is also shown how scalar-valued results readily
extend to the matrix case. If, for example, bsrA = 1, then bsrAn×n = 1, by [37, Theorem 3].
It easily follows (first extend the matrices to squares and later discard unnecessary blocks)
that if f ∈ An×n and g ∈ Am×n are coprime, then gf−1 is strongly stabilizable (that is, there
exists h ∈ An×m such that f +hg ∈ U1(An×n). A generalization of this result is given in [22].
Moreover, the above method is constructive if the corresponding scalar result is constructive
(as they mostly are).

We also note that most of the applications of stable rank and reduction results are robust
with respect to errors, because Un is open (Lemma 3.4). For example, strong stabilization is
robust with respect to small errors in f , g and h (we still have f + hg ∈ U1(A)). Moreover,
since most of our algebras are full in the corresponding H∞ algebra (Theorem 4.3), the
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applications are actually robust in H∞, that is, the true functions (data or solutions) need
not even lie in A at all, it suffices that they are close to our models in the supremum norm if
we are satisfied by the corresponding properties in H∞ (for example, for strong stabilization
in H∞). Furthermore, in general the construction of h ∈ H∞ such that f + hg ∈ U1(H∞)
is terribly difficult [36], so there is a huge advantage of being able to make any constructions
in a nice algebra where more elementary constructive results are available. Naturally, the
corresponding simple model for h is also desirable.

10.2. Existence of coprime factorizations. Above we considered coprime factorizations
g/f . Often transfer functions are given as fractions g/f with g, f ∈ A, f 6= 0 that are not
necessarily coprime (∈ U2(A)). To be able to apply the numerous results for coprime fractions
in the literature, such as those in this article, one then wants to find an equivalent coprime
factorization. We treat this problem in the remark below.

Remark 10.7. Let f, g ∈ A, f 6= 0, where A is a commutative ring with no zero divisors
(that is, a, b ∈ A, ab = 0, b 6= 0 ⇒ a = 0). Note that all (non-matrix) algebras defined
in this article are of that form. We call “g/f = w/v” a coprime factorization of “g/f” if
(v, w) ∈ U2(A) and gv = fw.

The ring A is a so-called Bézout domain iff all such fractions have a coprime factorization
[38, p. 332].

Using the corona theorems of this article and methods similar to those in [39] and [18], one
can show that M1,exp

+ , (M(1+)
+ )exp

R , Aexp(D) = H∞,exp(D), Aexp(D)R = H∞,exp(D)R, Cexp(T),
Cexp(T)R, `1,exp(N) and `1,exp(N;R) are Bézout domains but the none of the other algebras
defined in this article are Bézout domains.

However, under the additional assumption that the denominator f is bounded below at
infinity, that is, |f(z)| ≥ ε (z ∈ C+, |z| > R) for some ε, R > 0, then f/g does have a
coprime factorization provided that A equals H∞,exp(C+), H∞,exp

R (C+), (A′+L1(R+))exp, or
(A′ + L1(R+))exp

R , where A′ is a subalgebra of M+ and the corona theorem holds for A′.
We omit the proofs. In all positive results above, a suitable coprime factorization can be

obtained by dividing out the zeros of (f, g) by a suitable rational function (then use the corona
Theorem 9.3). The proofs of the negative results are mostly similar to those given in the two
references.

An analogous claim holds also in the matrix-valued case (cf. p. 885 and Theorem 2.1 of
[39]).

The fact that `1,exp(N) is a Bézout domain (and `1(N) and `1(N2) are not) was proved in
[39]. For (M++L1(R+))exp the existence of a coprime factorization was shown in [4] assuming
that f is bounded below at infinity. Some of the negative results were established in [18].

Appendix A. Auxiliary results

In this appendix we present some technical results commonly used in our proofs.
First we describe important dense subsets of our algebras.

Lemma A.1 (density). In each `1 algebra, elements with finite support are dense. Con-
sequently, finite linear combinations of (included) δr’s are dense in each M∗∗ algebra (see
Remark 2.1). Their Laplace transforms are dense in AP, AP+ and APS. Continuous func-
tions with compact supports are dense in each L1 space in this article. Polynomials are dense
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in A(Dn), by Taylor’s Theorem. Polynomials in zk’s and in z−1
k ’s are dense in C(Tn), by the

Stone–Weierstrass theorem. Corresponding claims also hold for corresponding real algebras.

So for example, real polynomials are dense in A(Dn)R and real elements of `1(R) with finite
support are dense in `1(R;R). Obviously, Lemma A.1 holds for the corresponding exponential
algebras too. By Lemma 5.19, rational functions are dense in F(Cδ0 + L1).

Proof. This is straightforward except for the real case. But that follows from corresponding
complex claims (or as above), for example, if h ∈ C(Tn)R and some polynomials pn converge
uniformly to h on D, then ‖(pn)R − h‖∞ = ‖(pn − h)R‖∞ → 0, by Lemma 4.4. ¤

We recall from [26, p. 153] that a differentiable image of a null set is a null set.

Lemma A.2. If V ⊂ Rn is open, f : V → Rn is differentiable, Ω ⊂ V , and m(Ω) = 0, then
m(f [Ω]) = 0; hence then Rn \ f [Ω] is dense in Rn.

If Ω ⊂ Rk is open, k < n, and f : Ω → Rn is differentiable, then m(f [Ω]) = 0; hence then
Rn \ f [Ω] is dense in Rn.

To prove the latter claim, apply the former to g(x1, . . . , xn) := f(x1, . . . , xk), V := Ω×Rn−k,
and Ω′ := Ω× {0}n−k.

The following is an obvious consequence of Brouwer’s fixed point theorem.

Lemma A.3 (Brouwer). If f ∈ C(Rn;Rn) is bounded, then f(x) = x for some x ∈ Rn.

We recall the Riemann–Lebesgue Lemma.

Lemma A.4 (Riemann–Lebesgue). If f ∈ L1(R+) (respectively, f ∈ L1(R)) and ε > 0, then
there exists R < ∞ such that |f(z)| < ε when z ∈ C+ (respectively, z ∈ iR) and |z| ≥ R.

The next result says that if f ∈ C1 has a zero f(a) = 0 with invertible derivative f ′(a),
then for small g ∈ C, f + g also has a zero (near a).

Lemma A.5. Let V ⊂ Rn be open and a ∈ V . If f ∈ C1(V ;Rn), f(a) = b and f ′(a) is
invertible, then there exists δ > 0 such that for every g ∈ C(V ;Rn) satisfying ‖g‖∞ < δ, there
holds that b ∈ (f + g)[V ].

Assume, in addition, that M ′′ := supV ‖f ′′‖ < ∞. If M := ‖f ′(a)−1‖, then we can have
δ = 1/4M2M ′′ above.

Proof.
1◦ We can and will assume that a = 0 = b. By the Inverse Function Theorem [25],

there exists r > 0 and an open W ⊂ Rn such that Br ⊂ V , f is one-to-one on Br

with inverse h ∈ C1(W ; Br), where W := f [Br], Br := {x ∈ Rn : |x| < r}. Fix some
ε ∈ (0, r). Since h(0) = 0 (that is, h(b) = a), there exists δ > 0 such that |h(x)| ≤ ε
when |x| ≤ δ.

Assume that ‖g‖∞ ≤ δ. The function G := h ◦ −g ∈ C(V ;Rn) satisfies |G(x)| ≤ ε
for x ∈ V , so G maps B̄ε → B̄ε. From Brouwer’s fixed point theorem, it follows that
G(x) = x for some x ∈ B̄ε. But f(x) = f(G(x)) = f(h(−g(x))) = −g(x), that is,
f(x) + g(x) = 0, as desired.

2◦ From the proof of [25, Theorem 9.24], we observe that r := 1/2MM ′′ will do above.
But |f(x)| ≥ 0+|f ′(a)x|−M ′′|x|2/2 ≥ |x|/‖A−1‖−M ′′|x|2/2 > |x|M−1(1−MM ′′r/2) ≥
εM−13/4 = δ when r > |x| ≥ ε. Thus f [Br \ Bε] ⊂ Bc

δ . So h[Bδ] ⊂ Bε ∪ Br, hence
h[Bδ] ⊂ Bε (being connected and containing h(0) = 0), so this δ will do. Since ε < r
was arbitrary, any δ < rM−13/4 = 3/8M2M ′′ will do.
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[37] L.N. Vaserštĕın. The stable range of rings and the dimension of topological spaces. (Russian) Akademija
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