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Työssä käydään läpi lokaalin röntgentomogra�an matemaattista teoriaa. Tämä teoria osoit-

taa, milloin ja miten n-ulotteinen kappale (n � 2) voidaan rekonstruoida käyttämällä

mittaustuloksia siitä, kuinka paljon röntgensäteet vaimenevat kappaleen läpi kulkiessaan.

Matemaattisesti kyse on kompaktikantajaisen funktion f : R

n

! R määrittämisestä sen

integraaleista eri suoria pitkin.

Itse funktion f rekontruktio on numeerisesti epästabiili toimitus, mutta työssä johdetaan

lähteen [SK] mukaisesti kaavat, joiden avulla e�f ja �e�f voidaan rekonstruoida stabiilisti.

Tässä e � f ja �e � f ovat eräiden oletusten vallitessa funktioiden f ja �f = F

�1

�

j�j

^

f(�)

�

approksimaatioita, joissa pienimmät yksityiskohdat ovat sumentuneet. Rekonstruktio-

kaavoja johdettaessa tarvittavaa Calderón-Zygmund-teoriaa käydään myös läpi, pitkälti

teoksen [Ner] esitystapaa seuraten.

Funktio �f antaa käyttökelpoista tietoa kappaleen sisäisestä rakenteesta, sillä Calderónin

pseudodi�erentiaalioperaattori � säilyttää epäjatkuvuuskohtien sijainnin. Tämä osoite-

taan lähteestä [RK] löytyvän hahmotelman mukaisesti näyttämällä, että funktioiden

f ja �f aaltorintamajoukot ovat samat. Todistuksessa ei tarvita pseudodi�erentiaali-

operaattoreiden teoriaa.

Eräs syy funktion �f tarkastelemiseen on, että sen likimääräinen rekonstruktio onnistuu

paikallisesti: jos kiinnostuksen kohteena on vain osa kappaleesta, rekonstruointia varten

tarvitaan mittaukset ainoastaan niitä suoria pitkin, jotka kulkevat kiinnostavan alueen

läpi tai aivan sen läheltä. Funktioita f ja e � f ei voida rekonstruoida paikallisesti.

Kaksi stabiilisuustulosta, joita ei ole suoraan esitetty kirjallisuuslähteissä, todistetaan

myös. Niiden mukaan mittausvirheen L

2

-normi rajoittaa tasaisesti funktioiden e � f ja

�e � f rekonstruktioiden virheitä.

Lukijalta edellytetään reaalianalyysin, distribuutioteorian ja Fourier-analyysin perus-

tietoja; näiden keskeisimpiä kohtia luetellaan liitteessä. Työssä esitetään todistukset kaikille

tuloksille, joita käytetään teorian johtamisessa, lukuunottamatta edellä mainittuja esitie-

toja sekä kahta Rieszin muunnosten jatkuvuutta koskevaa lausetta, joiden osalta viitataan

lähteeseen [Zie]. Näistä lauseista seuraa myös se, että lähteessä [SK] esiintyvä funktio-

avaruus D

xr

onkin itse asiassa vain neliöintegroituvien funktioiden avaruus. Tästä seikasta

ei löydy mainintoja aikaisemmassa kirjallisuudessa.

Avainsanat: tomogra�a, tietokonetomogra�a, CT, lokaali, inversio-ongelmat,

singulaariset integraalit, Calderón-Zygmund-teoria

Ei lainata ennen: Työn sijaintipaikka:

ii



HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER'S THESIS

Author: Kenrick Bingham

Title of thesis: Mathematics of Local X-Ray Tomography

Finnish title: Lokaalin röntgentomogra�an matematiikkaa

Date: 18

th

August, 1998 Pages: 107

Department: Department of Engineering Physics and Mathematics

Chair: Mat-1 Mathematics

Supervisor: Professor Olavi Nevanlinna

Instructor: Professor Erkki Somersalo

This thesis provides a self-contained account of the basic mathematical theory of local

x-ray tomography. The theory shows when and how an n-dimensional object (n � 2) can

be reconstructed, using attenuation measurements of x-rays passing through the object.

Mathematically speaking, the problem is to determine a compactly supported function

f : R

n

! R from its line integrals.

The reconstruction of f itself is a numerically instable operation, but formulae are derived

for the stable reconstruction of e�f and �e�f , following [SK]. Here e�f and �e�f are, under

certain assumptions, blurred approximations of f and �f = F

�1

�

j�j

^

f(�)

�

, respectively.

The Calderón-Zygmund theory needed for deriving the reconstruction formulae is also

presented, largely according to [Ner].

The function �f provides meaningful information about the internal structure of the object,

since the Calderón pseudodi�erential operator � preserves the locations of discontinuities.

This is shown by proving that the wave front sets of f and �f are the same. The elementary

proof of this fact, which does not use the theory of pseudodi�erential operators, is presented

as outlined in [RK].

One reason for considering �f is that its approximate reconstruction can be done locally.

This is to say that if the region of interest is only part of the object examined, measurements

are needed only along lines through the region of interest, or very close to it. The functions

f and e � f cannot be reconstructed locally.

Two stability results not directly given in the references are proved. They state that the

errors in the reconstructed e � f and �e � f are uniformly bounded by the L

2

norm of the

error in the measurements.

The presentation is self-contained in the sense that only some basic knowledge of real

analysis, distribution theory and Fourier analysis is required; some of the most central

results of this background theory are listed in an appendix for reference. Apart from

these prerequisites, proofs of all results used are given, except for two theorems concerning

the continuity of the Riesz transform, for whom the reader is referred to [Zie]. These

theorems also imply that the function space D

xr

, considered in [SK], is just the space of

square-integrable functions. Earlier statements of this fact were not found in literature.
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Chapter 1

Introduction

The need to �nd out the internal structure of an object without opening it physically

arises in many situations. One such situation is medical imaging, where the objective

is to look inside the patient's body without performing surgery.

A way to satisfy the need for noninvasive imaging was found in 1895 when x-rays

were discovered by Wilhelm Röntgen. They made it possible to see through the

softer parts of di�erent objects and thus to produce a silhouette of, e.g., the skeleton

of a living person. The full three-dimensional structure remained, however, hidden

from the outside observer for nearly a century.

The invention of computed tomography (CT)

1

in the beginning of the 1970's �nally

made it possible to reconstruct the three-dimensional structure of the object with

a computer, using digitized x-ray pictures taken from di�erent directions. The in-

tensity resolution with which the x-ray attenuation could be analysed also increased

substantially. This made it possible to characterize di�erent types of materials, or tis-

sues, by the x-ray attenuation coe�cient, which is also called the Houns�eld number

in honour of Sir Godfrey Houns�eld who developed the �rst CT device in 1972.

Some of the mathematical foundations needed for the reconstruction have been

known for a relatively long time. The reconstruction formula for a two-dimensional

slice was derived by Johann Radon as early as 1917 [Rad], but it was only with the

development of computers that this reconstruction could be realized in practice.

Computed tomography presents an inverse problem. If the three-dimensional struc-

ture of the object is known, calculating the two-dimensional projection in a particular

direction is a straightforward computation: one just needs to add up the x-ray atten-

uation coe�cients at all points along the straight line along which the x-ray travels,

to �nd out how much the ray will be attenuated when it reaches the detector, photo-

graphic �lm or �uorescent plate. In the other direction, the task of reconstructing the

three-dimensional structure from the x-ray pictures, is a more complicated problem.

It is often the case that the region of interest is only a small part of the object

examined, for instance a particular organ of a living person. In this case, it would

be convenient to be able to do the reconstruction locally, that is, only using x-rays

1

The names computerized tomography, computer aided tomography (CAT), computerized axial

tomography (CAT) and CAT-scan are also used.

1



1. Introduction 2

passing through the region of interest or very close to it. This would decrease both

the x-ray dose and the amount of data that must be processed (see Figure 1.1).

It turns out that the x-ray attenuation coe�cient f itself cannot be reconstructed

locally, but another function �f = F

�1

�

j�j

^

f(�)

�

can, and that for many practical

purposes, �f yields signi�cant information about the internal structure of the object.

x-ray source

object

region of interest

Figure 1.1: Local tomography only uses data from x-rays passing through

the region of interest or very close to it.

This thesis attempts to give a self-contained account of the basic mathematical theory

showing when and how the reconstruction can be done. The reader will be assumed

to know some real analysis, distribution theory and Fourier analysis, some of the

most central results of which will be revised in Appendix A. Apart from these basic

results, two theorems concerning the continuity of the Riesz potential operators will

also be stated without proof in Section A.2 of Appendix A. The reason for omitting

the proofs is that they require a comparatively lengthy treatment which does not

directly support the rest of the work. The proofs can be found in [Zie].

The text is organised as follows. Chapter 2 introduces the notation that will be used.

Chapter 3 derives the main results of this work in a descriptive and non-rigorous way.

Chapter 4 calculates the Fourier transforms of the singular Riesz kernel, presents

some Calderón-Zygmund theory according to [Ner] and applies it to calculate the

Fourier transform of the Riesz transform, which is a singular convolution operator.

These Fourier transforms are used in Chapter 5 for deriving the reconstruction for-

mulae, following the treatment in [SK]. As the exact reconstruction of the x-ray

attenuation coe�cient f turns out to be an instable operation, an approximate re-

construction formula for e � f , where e is a blurring kernel, is derived too, as well as

a local reconstruction formula for �e � f , which can be seen as an approximation of
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�f . Stability results for these approximate reconstructions are derived at the end of

the chapter from the reconstruction formulae given in [SK]. It is also noted that the

space D

xr

, appearing in the assumptions of many of the theorems, is actually just

the space of square-integrable functions, as follows from the two theorems in [Zie]

mentioned above.

Chapter 6 shows that f and �f have the same discontinuities, following the treatment

in [RK]. Chapter 7 lists some further results describing the properties of �f , presents

a few extensions to the theory and proposes possible subjects for further study.

Computed tomography of course involves many other, both theoretical and prac-

tical issues, which we shall not go into but rather leave as possible subjects for

further study. Such issues relate, for instance, to the numerical implementation of

the reconstruction, using some algorithm like the algebraic reconstruction technique

(ART) or the �ltered backprojection algorithm, and statistical questions relating to

the measurement process. The choice of the blurring kernel e involves important

numerical considerations, too. Convolution with e can usually be seen as a low-pass

�ltering process on the image, and other digital image processing operations may be

expedient for making the reconstructed image as informative as possible. [CJS, Nat]

We shall also not consider other types of tomography, like magnetic resonance imag-

ing (MRI, NMR), electric impedance tomography (EIT), ultrasound imaging, mag-

netoencephalography (MEG) or nuclear emission tomography, all of which are lively

research �elds. On the other hand our treatment covers imaging using any beams of

rays or particles that travel along a straight line and whose attenuation is measured

behind the object, because the mathematical model describing them is identical to

that of x-ray imaging. Such beams include gamma rays, which are in wide use in

medical imaging, and electron beams.

Electron beams are used in electron microscopy, where the object examined is nor-

mally a planar specimen through which the beam must pass more or less transversally.

Therefore the attenuation of the beam can be measured only in a limited range of

angles, which presents an incomplete data problem. Other types of incomplete data

problems are encountered when an opaque implant prevents measurements through

an area within the region of interest, or when only part of the object can be x-rayed,

for example if the object is too big. Questions concerning the well-posedness of

incomplete data problems and the uniqueness of their solutions will also be left as

topics for further study.

The �colour spectrum� � the dependence of the x-ray attenuation coe�cient on the

energy (wavelength) of x-rays used � will also be neglected, as well as all physical,

technical and medical issues.



Chapter 2

Notational Conventions

Sets of Numbers and Euclidean Spaces

We shall use the notation

N = f0; 1; 2; : : : g

Z= f: : : ;�2;�1; 0; 1; 2; : : : g

Z

+

= f1; 2; 3; : : : g

for the sets of natural numbers, integers and positive integers, respectively. The real

�eld will be denoted by R and the complex �eld by C = fx+ iy jx; y 2 Rg.

The n-dimensional Euclidean space will be denoted by

R

n

=

n

x = (x

1

; x

2

; : : : ; x

n

) =

n

X

j=1

x

j

e

j

�

�

x

j

2 R

o

: (2.1)

The natural basis is fe

j

g

n

j=1

, where e

j

= (0; 0; : : : ; 0; 1; 0; : : : ; 0) with the 1 at the

j

th

place. Analogously, N

n

will be the set of n-tuples of natural numbers,

N

n

=

n

� = (�

1

; �

2

; : : : ; �

n

) =

n

X

j=1

�

j

e

j

�

�

�

j

2 N

o

: (2.2)

Inner products in R

n

will be denoted by

x � y =

n

X

j=1

x

j

y

j

(2.3)

and norms by

jxj =

p

x � x: (2.4)

The letters r, �, ' and ! will often be used without separate mention to denote the

polar and spherical coordinates introduced in Section A.3 of Appendix A.

All integrals appearing will be Lebesgue integrals and all functions will be Lebesgue

measurable. If the domain of integration is omitted, it is assumed to be the entire

4



2. Notational Conventions 5

space. The Lebesgue measure of the obvious dimension will be denoted by m; in the

zero-dimensional case, we shall use the counting measure. By saying that a condition

P (x) holds �for almost all x� or �almost everywhere� (abbreviated �a.e.�), we mean

that there exists a set N such that m(N) = 0 and that P (x) holds for all x 2 R

n

nN .

For all n 2 Z

+

, we shall denote the unit ball in R

n

by B

n

and its boundary, the unit

sphere in R

n

, by S

n�1

:

B

n

= fx 2 R

n

j jxj < 1g; S

n�1

= fx 2 R

n

j jxj = 1g = @B

n

(2.5)

(the notation @A is used for the boundary of the set A). Their n-dimensional and

n� 1-dimensional Lebesgue measures, respectively, are calculated in Lemma A.10:

jB

n

j := m(B

n

) =

2�

n=2

n�

�

n

2

�

and jS

n�1

j := m(S

n�1

) =

2�

n=2

�

�

n

2

�

= n jB

n

j: (2.6)

The unit hemisphere closest to y 2 R

n

n f0g will be denoted by

S

n�1

+

(y) = fx 2 S

n�1

jx � y > 0g: (2.7)

More generally, the open ball and sphere with radius R and centre at x

0

will be

denoted, respectively, by

B

n

(x

0

; R) = fx 2 R

n

j jx� x

0

j < Rg (2.8)

and

S

n�1

(x

0

; R) = fx 2 R

n

j jx� x

0

j = Rg: (2.9)

The dimension n will in most cases be omitted from the notation when it is obvious.

For k � n, we shall often think of R

k

as being embedded into R

n

.

The distance between a point x 2 R

n

and a set B � R

n

and the distance between

two sets A; B � R

n

are denoted by

dist(x;B) = inf

y2B

jx� yj and dist(A;B) = inf

x2A

dist(x;B); (2.10)

respectively. The characteristic function of a subset X 2 R

n

is the function �

X

:

R

n

! f0; 1g de�ned by

�

X

(x) =

(

1; x 2 X

0; x 62 X:

(2.11)

The symbol := will be used in de�nitions in the middle of the text, for emphasizing

that we are making a de�nition and not asserting an equality. For example a := b

will mean that a is de�ned to be equal to b. Analogously, a =: b will mean that b is

de�ned to be equal to a.
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Multi-indices

Multi-indices � = (�

1

; �

2

; : : : ; �

n

) 2 N

n

will often be used to write monomials of

x 2 R

n

:

x

�

= x

�

1

1

x

�

2

2

� � � x

�

n

n

=

n

Y

j=1

x

�

j

j

: (2.12)

The total degree of a multi-index is

j�j =

n

X

j=1

j�

j

j: (2.13)

An analogous notation will be used for classical partial derivatives:

@

�

f =

@

�

1

@x

�

1

1

@

�

2

@x

�

2

2

� � �

@

�

n

@x

�

n

n

f =

@

j�j

f

@x

�

1

1

@x

�

2

2

� � � @x

�

n

n

: (2.14)

Hence, the total degree coincides here with the order of the partial derivative. In

�rst-order partial derivatives, @

e

j

is abbreviated as @

j

. For distribution derivatives

(weak derivatives), the letter D will be used instead of @.

The Leibniz rule for multi-indices takes the form

@

�

(uv) =

X

���

c

��

@

�

u@

���

v; (2.15)

where c

��

2 N are constants and � � � means the partial order �

j

� �

j

for all

j 2 f1; : : : ; ng.

Function Spaces and Distributions

The most important mathematical tools that will be used are the basic results of

real analysis, the theory of distributions and Fourier analysis. Some of the most

central ones are presented for reference in Appendix A. The theory can be found in

references [Fri, HS, Hör, Rau, Ru1, Ru2].

We shall be dealing with the following function spaces, all of which have a vector

space structure:

� C

k

(X), the space of k times continuously di�erentiable functions, k 2 N[f1g

� C

k

0

(X) = ff 2 C

k

(X) j supp f compactg, the space of compactly supported C

k

functions

� L

p

(X) = ff : X ! C j jjf jj

L

p

< 1g, with norm jjf jj

L

p

=

�R

X

jf(x)j

p

dx

�

1=p

,

1 � p <1 (see Section A.1.1)

� L

1

(X), the space of integrable functions

� L

1

(X) = ff : X ! C j jjf jj

L

1

< 1g, the space of essentially bounded func-

tions, with norm jjf jj

L

1

= inffM 2 R j f(x) �M a.e.g
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� L

p

0

(X) = ff 2 L

p

(X) j supp f compactg, the space of compactly supported L

p

functions

� L

p

loc

(X) = ff : X ! C jK � X compact)

R

K

jf(x)j

p

dx <1g, 1 � p <1

� L

1

loc

(X), the space of locally integrable functions

� D(X); D

0

(X); S(X); S

0

(X), the spaces of compactly supported test functions,

distributions, rapidly decreasing functions and tempered distributions (see Sec-

tion A.1.3)

� H

s

(R

n

) = ff 2 S

0

j jjf jj

H

s

< 1g, with norm jjf jj

H

s

= jj(1 + j�j

2

)

s=2

^

f(�)jj

L

2
,

Sobolev space of order s 2 R (see Section A.1.5).

If the set X � R

n

is omitted, it is assumed to be the whole R

n

.

The inner product of f 2 L

2

(X) and g 2 L

2

(X) will be denoted by

(f; g) =

Z

X

f(x) g(x) dx: (2.16)

The notation hf; �i will be used for the integral

R

f(x)�(x) dx, and more generally

for the distribution duality of the distribution f and the test function �. Observe

that the complex conjugate of the second argument is taken in (f; g) but not in hf; gi.

Of the various variants of the de�nition of the Fourier transform, we choose

Ff(�) =

^

f(�) = (2�)

�n=2

Z

f(x) e

�ix��

dx (2.17)

for functions f 2 S. For the de�nition for more general functions and further prop-

erties of the Fourier transform, see Section A.1.4.

Various constants whose exact values are not of interest, will be denoted by C

j

,

j 2 N.

For other notation, see the table of notation in Appendix B.



Chapter 3

X-Ray Imaging

3.1 Divergent Beam Radiography

Consider an object in n-dimensional space, the inside structure of which is to be

investigated using x-ray imaging. (For the rest of this chapter, n � 2 can be con-

sidered �xed; in practice the value of n is usually, of course, 2 or 3.) Call f(x) the

x-ray attenuation coe�cient at point x 2 R

n

; we expect f to give information about

the object since the attenuation coe�cient depends on the material through which

the ray passes.

Suppose that the object is contained in a ball of radius R with the centre at the

origin, and that the x-ray attenuation coe�cient f is zero outside the object:

supp f � B(0; R): (3.1)

If the object is x-rayed in a direction � 2 S

n�1

from a point a 2 A := S

n�1

(0; R),

the attenuation of the x-ray intensity I at each point a+ t�, t � 0, is

�dI = f(a+ t�) I dt: (3.2)

By solving this di�erential equation, we see that the intensity of the x-ray measured

by a detector situated behind the object is

I

meas

= I

0

exp

�

�

Z

1

0

f(a+ t�) dt

�

: (3.3)

Our aim will be to derive formulae for reconstructing f(x) from the measurements

I

meas

, or equivalently from

Z

1

0

f(a+ t�) dt = ln

�

I

0

I

meas

�

; (3.4)

with di�erent combinations of a 2 A and � 2 S

n�1

.

De�nition 3.1. For a measurable function f : R

n

! R, the function Df : A �

S

n�1

! R,

(a; �) 7! D

a

f(�) :=

Z

1

0

f(a+ t�) dt; (3.5)

is called its divergent beam radiograph.

8
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In the case n = 2, which is naturally very important in practice, the divergent beam

radiograph D

a

f(�) coincides with the Radon transform Rf(�; a � �), which is by

de�nition the integral of f over a hyperplane:

Rf(�; s) =

Z

x��=s

f(x) dx: (3.6)

This transform is named after Johann Radon who already in 1917 derived an in-

version formula for the two-dimensional Radon transform [Rad]. The theory of

computed tomography is often presented using the Radon transform instead of the

divergent beam radiograph, and formulae are derived for reconstructing f from Rf

[Nat, RK]. We shall, however, do the generalisation into higher dimensions using the

divergent beam radiograph, sometimes also called the fan-beam transform in two

dimensions and the cone-beam transform in three dimensions.

In practice, only a �nite number of measurements are ever made. The attenuation

factors in di�erent directions can be measured using a spherical array of detectors

on A. The x-ray source can then be turned together with the detectors, and the

measurements repeated in each position. (See Figure 3.1.)

detectors

θ
A

object

a

Figure 3.1: Divergent beam radiography.

The precise radiograph function Df : A � S

n�1

! R is thus approximated by an

interpolation of the measurements. Continuity results will be important in order to

ensure that this approximation and slight inaccuracies in the measurements do not

cause large errors in the reconstructed x-ray attenuation coe�cient.

The structure of a three-dimensional object can be computed by working in R

3

, where

the x-ray source must be moved about the whole surface of a sphere surrounding the

object. Another approach would be to �slice� the object up mathematically in one

direction, and to reconstruct the cross sections of the 3-dimensional structure on

each 2-dimensional slice, using measurements on a 1-dimensional sphere, which is

to say a circle, surrounding the slice in R

2

. The latter technique may be simpler to
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implement in practice, with respect to both the mechanics of the measurement device

and the amount of data that must be processed in the computations. However, both

approaches have their own advantages.

In deriving the reconstruction formulae, let us �rst proceed formally, and give rigor-

ous proofs of the theorems in later chapters.

3.2 Exact Reconstruction Formula

Integrating the measurements in all directions with the x-ray source at a �xed point,

we get, using polar coordinates x = t�, dx = t

n�1

dt d�,

Z

S

n�1

D

a

f(�) d� =

Z

S

n�1

Z

1

0

f(a+ t�) dt d� =

Z

R

n

f(a� x) jxj

1�n

dx: (3.7)

We shall write this in the form

Z

S

n�1

D

a

f(�) d� =

1

b

n

R

1

� f(a); (3.8)

using the Riesz potential:

De�nition 3.2. For n � 2, the tempered distribution R

1

2 S

0

(R

n

), de�ned by the

locally integrable function

R

1

(x) = b

n

jxj

1�n

; b

n

=

�(

n�1

2

)

2�

(n+1)=2

=

1

� jS

n�2

j

; (3.9)

is called the Riesz kernel. The function R

1

� f is called the Riesz potential of the

measurable function f .

Many texts, including [Nat], [RK], [Ste] and [Zie], use the notation I

1

f or I

1

f instead

of R

1

� f .

Ignoring for a while that the measurements D

a

f(�) are only known for a 2 A, we

perform the Fourier transform with respect to a 2 R

n

and get (the Fourier transform

of R

1

will be calculated in Section 4.1)

F

�

Z

S

n�1

D

a

f(�) d�

�

=

(2�)

n=2

b

n

F(R

1

)Ff =

1

b

n

j�j

�1

^

f; (3.10)

which leads to the reconstruction formula

f(x) = b

n

F

�1

�

j�j F

�

Z

S

n�1

D

x

f(�)d�

��

; (3.11)

where x is written instead of a. This can be written more compactly as

f(x) = b

n

�

�

Z

S

n�1

D

x

f(�)d�

�

; (3.12)

where � is the Calderón operator:
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De�nition 3.3. The operator � : S

0

(R

n

) ! S

0

(R

n

), n 2 Z

+

, de�ned through its

Fourier transform as

F(�g)(�) = j�j bg(�); (3.13)

is called the Calderón operator.

The formal calculation

F

�

�(R

1

� g)

�

(�) = j�j j�j

�1

bg(�) = bg(�) (3.14)

above, when carried out properly in Chapter 5, yields the following result:

Theorem 3.4. (Repeated later as Theorem 5.18.) If n � 2, f 2 D

xr

(R

n

) and

j�j

�1

^

f(�) 2 L

1

loc

(R

n

), then for almost all x,

�(R

1

� f)(x) = f(x): (3.15)

The x-ray domain D

xr

will be introduced in De�nition 5.1.

It will be convenient to know a more direct expression for the Calderón operator �,

in addition to its Fourier transform. The formal calculation

�f = F

�1

�

n

X

j=1

�i �

j

j�j

�1

i �

j

^

f(�)

�

= �

n

X

j=1

(2�)

�n=2

F

�1

�

i �

j

j�j

�1

�

� F

�1

�

i �

j

^

f(�)

�

= �

n

X

j=1

@R

1

@x

j

�

@f

@x

j

(3.16)

will be justi�ed for f 2 L

2

in Chapter 4, if the convolution is interpreted as a

principal value (p: v: ) convolution, introduced in De�nition 4.3. We then get the

following theorem:

Theorem 3.5. (Repeated later as Theorem 4.11.) For all n 2 Z

+

, the Calderón

operator � can be expressed as

� = �

n

X

j=1

p: v:

@R

1

@x

j

�D

j

: (3.17)

It is a continuous operator from H

1

to L

2

.

The problem of only knowing D

a

f(�) when a 2 A can now be avoided by using the

elementary relationship

Z

S

n�1

Z

1

�1

g(x+ t�) dt d� = 2

Z

S

n�1

Z

1

0

g(x+ t�) dt d�; (3.18)

and making the substitution (see Figure 3.2)

� =

a� x

ja� xj

2 S

n�1

; d� =

j(x� a) � aj

R jx� aj

n

da (3.19)
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n-1

dθ

S

θ

A

x

ada

1

α

0

Figure 3.2: The change of variable � =

a�x

ja�xj

, d� =

j cos�j

ja�xj

n�1

da =

j

a�x

ja�xj

�

a

R

j

ja�xj

n�1

da =

j(x�a)�aj

R jx�aj

n

da used for deriving (3.20).

into (3.12). This yields the reconstruction formula

f(x) =

b

n

2

�

Z

S

n�1

Z

1

�1

f(x+ t�) dt d�

=

b

n

2R

�

Z

A

Z

1

�1

f(x+ t

a�x

ja�xj

) dt

j(x�a)�aj

jx�aj

n

da

=

b

n

2R

�

Z

A

Z

1

�1

f(a+ (�ja� xj+ t)

a�x

ja�xj

) dt

j(x�a)�aj

jx�aj

n

da

=

b

n

2R

�

Z

A

�

D

a

f(

a�x

ja�xj

) +D

a

f(�

a�x

ja�xj

)

�

j(x�a)�aj

jx�aj

n

da:

(3.20)

However, there are problems with using this formula. Since the operator � involves

di�erentiation and convolution with the strongly singular kernel

@R

@x

j

, the reconstruc-

tion is not stable with respect to errors in the measurements. The continuity from

H

1

to L

2

allows small but rapidly changing errors in the measurements to result

in large errors in the x-ray attenuation coe�cient reconstructed. An approximate

reconstruction can be used instead with more success.

The names of the commonly used �ltered backprojection and backprojection �ltering

algorithms [Nat, CJS] come from the reconstruction formula (3.15): The calculation

of R

1

� f by integrating the measurements over the sphere, as in (3.12), is the

backprojection operator. Multiplication on the Fourier transformed side, as by j�j

in �, is traditionally called �ltering in signal processing. Some other �ltering can

be combined with it to alleviate the e�ects of noise. This gives an approximate

reconstruction e � f , where e is a blurring kernel.
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3.3 Parallel Beam Radiography

When deriving an approximate reconstruction formula, we shall use the parallel beam

radiograph:

De�nition 3.6. For a measurable function f : R

n

! R, the function

Pf : f(�; x) 2 S

n�1

� R

n

jx 2 �

?

g ! R; (3.21)

(�; x) 7! P

�

f(x) :=

Z

1

�1

f(x+ t�) dt; (3.22)

is called the parallel beam radiograph of f .

Here

�

?

:= f�g

?

= fy 2 R

n

j y � � = 0g (3.23)

is the orthogonal complement of �.

As is easily seen, the parallel beam radiograph is related to the divergent beam

radiograph through

P

�

f(E

�

x) = D

x

f(�) +D

x

f(��); (3.24)

where

E

�

(x) := x� (x � �) � (3.25)

designates the orthogonal projection onto �

?

, � 2 S

n�1

� R

n

.

After using relation (3.24) and passing the operator � under the integral sign, (3.12)

yields the parallel beam reconstruction formula

f(x) =

b

n

2

Z

S

n�1

�P

�

f(E

�

x) d�: (3.26)

The parallel beam and divergent beam radiographs carry the same information be-

cause D

x

f(�), x 2 A, can be nonzero only when � points towards the interior of the

sphere A, so that always at least one of the members of (3.24) in known to vanish.

Therefore Pf can be seen just as an alternative notation that is more convenient

in some cases. However, the parallel beam radiograph operator P, sometimes also

called the x-ray transform, was perhaps more natural in the historical setting where

information about the object was collected in a di�erent way than that described

above in Section 3.1.

In parallel beam radiography, the object is exposed to a beam of parallel x-rays

covering the whole object. (See Figure 3.3.) The attenuation factor is measured at

one point for each ray, and the measurements are repeated for all di�erent directions

� 2 S

n�1

of the beam.

Another possibility would be to use a single x-ray source and a single detector behind

the object in direction �, to scan over �

?

by moving the source and the detector
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θ

θ

⊥

sources

detectors

object

x

Figure 3.3: Parallel beam radiography.

together, and to repeat this for all �. First generation CT scanners were based on

this technique.

Since parallel x-rays are di�cult to produce in practice, and the latter method of

scanning over each hyperplane �

?

can be quite time-consuming, divergent beam

radiography is nowadays more widely used in computed tomography.

3.4 Approximate Reconstruction Formula

The attenuation coe�cient f = � � f can be approximated by e � f , where e is an

approximate delta function, also called a blurring kernel or point spread function, for

instance the one de�ned in (A.48). For deriving a reconstruction formula for e � f ,

we shall use the following formal calculations:

The substitutions z = y+ t� 2 �

?

�R� = R

n

, and dz = dt dy and � = t+ s, d� = ds

yield

(P

�

e � P

�

f) (x) =

Z

�

?

Z

1

�1

e(y + t�) dt

Z

1

�1

f(x+ s� � y) ds dy

=

Z

R

n

e(z)

Z

1

�1

f

�

x� z + (t+ s)�

�

ds dz

=

Z

1

�1

Z

R

n

e(z)f(x+ �� � z) dz d� = P

�

(e � f)(x);

(3.27)
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which in turn gives

�

�

P

�

(e � f)

�

= �

n

X

j=1

p: v:

@R

1

@x

j

�

@

@x

j

(P

�

e � P

�

f)

= �

n

X

j=1

p: v:

@R

1

@x

j

�

�

@P

�

e

@x

j

� P

�

f

�

=

�

�

n

X

j=1

p: v:

@R

1

@x

j

�

@P

�

e

@x

j

�

� P

�

f = (�P

�

e) � P

�

f:

(3.28)

If we now replace f by e � f in Equation (3.26), we get the approximate parallel

beam reconstruction formula

e � f(x) =

b

n

2

Z

S

n�1

�P

�

(e � f)(E

�

x) d�

=

b

n

2

Z

S

n�1

(�P

�

e) � P

�

f(E

�

x) d�

=

b

n

2

Z

S

n�1

Z

�

?

�P

�

e(E

�

x� y)P

�

f(y) dy d�:

(3.29)

We then perform the change of variable y = E

�

a, dy =

ja��j

R

da. Here y runs twice

over the set B(0; R) \ �

?

(containing suppP

�

f) as a runs over the two hemispheres

of A (see Figure 3.4). This gives the approximate divergent beam reconstruction

formula

e�f(x) =

b

n

4R

Z

S

n�1

Z

A

�

�P

�

e(E

�

(x� a))

�

P

�

f(E

�

a) ja � �j da d�

=

b

n

4R

Z

A

Z

S

n�1

�

�P

�

e(E

�

(x� a))

� �

D

a

f(�) +D

a

f(��)

�

ja � �j d� da:

(3.30)

These formulae will be derived in Chapter 5 under the following assumptions:

Theorem 3.7. (Repeated later as Corollary 5.19.) Let n � 2 and e 2 D

xr

(R

n

)\

H

1=2

(R

n

) be such that j�j

�1

be(�) 2 L

1

loc

(R

n

). If f 2 L

2

0

(R

n

) and suppf � B(0; R),

then

e�f(x) =

b

n

2

Z

S

n�1

Z

�

?

�P

�

e(E

�

x� y)P

�

f(y) dy d�

=

b

n

4R

Z

A

Z

S

n�1

�P

�

e

�

E

�

(x� a)

� �

D

a

f(�) +D

a

f(��)

�

ja � �j d� da;

(3.31)

where A = S

n�1

(0; R).

In practice, it is of fundamental importance that this reconstruction is stable with

respect to errors in the measurements:

Theorem 3.8. (Repeated later as Theorem 5.21.) If n � 2 and e 2 D

xr

(R

n

)\

H

1=2

(R

n

) is such that j�j

�1

be(�) 2 L

1

loc

(R

n

), then there exists a constant C > 0 such

that

je � f(x)j � C jjDf jj

L

2

(S

n�1

(0;R)�S

n�1

)

(3.32)

for all f 2 L

2

0

(R

n

) with suppf � B(0; R) and all x 2 R

n

.
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dy

a
da

⊥
α

A

θ

θ
y

Figure 3.4: Substitution y = E

�

a, dy = j cos� j da =

ja��j

jaj j�j

da =

ja��j

R

da.

3.5 Reconstruction Formula for �e � f

For extracting information about the internal structure of the object, �e�f can also

be reconstructed instead of e � f . In that case, we have the following reconstruction

formula, which will also be derived in Chapter 5.

Theorem 3.9. (Repeated later as Theorem 5.20.) Let n � 2 and let e 2

H

3=2

(R

n

) be such that �e 2 D

xr

(R

n

). If f 2 L

2

0

(R

n

), then

�(e�f)(x) = (�e) � f(x)

=�

b

n

2

Z

S

n�1

�

4P

�

e

�

�

�

P

�

f

�

(E

�

x) d�

=�

b

n

4R

Z

A

Z

S

n�1

4P

�

e(E

�

(x� a)) (D

a

f(�) +D

a

f(��)) ja � �j d� da

(3.33)

for all x 2 R

n

. If, in addition, e has compact support, then

�(e � f) = e � �f: (3.34)

This reconstruction, too, is a stable operation:

Theorem 3.10. (Repeated later as Theorem 5.22.) If n � 2 and e 2 H

3=2

(R

n

)

is such that �e 2 D

xr

(R

n

), then there exists a constant C > 0 such that

j�e � f(x)j � C jjDf jj

L

2

(S

n�1

(0;R)�S

n�1

)

(3.35)

for all f 2 L

2

0

(R

n

) with suppf � B(0; R) and all x 2 R

n

.

Of course, �e�f looks di�erent from e�f , but in many practical applications it gives

relevant information. Most importantly, e��f is nearly singular at points where �f

is singular. These are precisely the same points at which f is singular, as will be

shown in Chapter 6:
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Theorem 3.11. (Repeated later as Theorem 6.5.) If n � 2, f 2 L

2

(R

n

) and

�f 2 D

xr

(R

n

), then WF (f) =WF (�f).

The wave front set WF (f), describing the discontinuities of the distribution f , will

be introduced in De�nition 6.1.

This gives hope for the visibility of discontinuities of f in �e�f . The fact that the dis-

continuities of these two functions are located at the same points does not, of course,

prevent the jumps of �e � f from being much smaller and therefore undetectable

in practice. Fortunately, the situation is actually the opposite: discontinuities of f

become emphasized in �f .

This fact and other further results will be described in the concluding Chapter 7.

3.6 Local Tomography

Reconstructing e ��f(x) rather than e � f(x) has the advantage that it can be done

using data only from beams passing very close to x, in which case the process is called

local tomography. This is done by choosing the convolution kernel e in such a way

that for a �xed x, the support of the kernel4P

�

e in the reconstruction formula (3.33)

is small. Then D

a

f(�) is only needed for such a and � that E

�

(x� a) 2 supp4P

�

e.

An approximation of the x-ray attenuation coe�cient f itself cannot be reconstructed

locally, because in the e � f reconstruction formula (3.30), the support of the kernel

�P

�

e may not be bounded even if the support of e is. This is a consequence of the

fact that all pseudodi�erential operators

B : f(x) 7! F

�1

�

p(x; �)

^

f(�)

�

(3.36)

that are local in the sense that

suppBf � suppf (3.37)

are di�erential operators [Pee1, Pee2]. Equivalently, for B to be local, the function

p : R

n

� R

n

! C in (3.36), called the symbol of B, must be a polynomial in �,

possibly with functions of x as coe�cients. In the case of �,

p(x; �) = j�j =

v

u

u

t

n

X

j=1

�

2

j

(3.38)

is clearly not a polynomial.

There are many practical bene�ts if the area of interest is only part of the object

x-rayed, for example, the heart of a living person.

Because the x-ray beam can be kept narrower, the overall x-ray dose to which the

object is exposed can be reduced, which is bene�cial since x-ray imaging is not

completely noninvasive; adverse e�ects of x-ray exposure to both living creatures

and inanimate objects are well known.

Fewer x-ray beams also imply a decrease in the amount of data that must be processed

for reconstructing an image with a given resolution. This speeds up the imaging
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process, which makes it possible to monitor the time evolution, for example, of a

beating heart. Alternatively, the resolution can be increased, since concentrating on

a smaller region reduces the technological restrictions arising from the design of the

detectors and the optical demagni�cation needed.

The x-ray attenuation coe�cient f itself could now be computed as e�f = R

1

��e�f

from the locally reconstructed �e � f . However, this is usually not done because

the great amplitude of �e � f near f 's discontinuities would substantially increase

the instability of reconstructing e � f . In practice, �e � f also often gives enough

information.



Chapter 4

Fourier Transforms of Singular

Integrals

4.1 Fourier Transform of the Riesz Kernel

For working with the Riesz kernel R

1

, we shall �rst show that it is a tempered

distribution and calculate its Fourier transform FR

1

, largely according to [Ner].

Theorem 4.1. Let n � 2. Then R

1

is a tempered distribution and

FR

1

(�) = (2�)

�n=2

j�j

�1

: (4.1)

Proof. The function h(x) = jxj

n�1

=

1

b

n

R

1

(x) is locally integrable, because for any

compact K � B

n

(0; R) � R

n

,

Z

K

jxj

1�n

dx �

Z

B

n

(0;R)

jxj

1�n

dx

= jS

n�1

j

Z

R

0

r

1�n

r

n�1

dr = R jS

n�1

j <1:

(4.2)

Write h = g

1

+ g

2

, where g

1

= h�

B(0;1)

2 L

1

� S

0

and g

2

= h�

R

n

nB(0;1)

2 L

2

� S

0

:

jjg

1

jj

L

1
= jS

n�1

j

Z

1

0

r

1�n

r

n�1

dr = jS

n�1

j <1;

jjg

2

jj

L

2
= jS

n�1

j

Z

1

1

r

2�2n

r

n�1

dr =

jS

n�1

j

2� n

<1:

Thus h 2 S

0

, so it makes sense to speak of Fh = bg

1

+ bg

2

, where bg

1

2 L

1

and

bg

2

2 L

2

. The distribution Fh is in fact a locally integrable function, since using

Hölder's inequality,

Z

K

jFh(�)j d� �

Z

K

j bg

1

j+ j bg

2

j d� � jj bg

1

jj

L

1

m(K) + jj bg

2

jj

L

2

p

m(K)

� (2�)

�n=2

jjg

1

jj

L

1 m(K) + jjg

2

jj

L

2

p

m(K) <1:

19
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Because �

�

h(x) = j�xj

1�n

= �

1�n

h(x),

F(�

�

h)(�) = �

1�n

b

h(�): (4.3)

On the other hand by Equation (A.58),

F(�

�

h)(�) = �

�n

�

1=�

b

h(�); (4.4)

and therefore, with � = 1=�,

�

�

b

h = �

�1

b

h: (4.5)

Hence

b

h can be written as

b

h(�) =

b

h(j�j

�

j�j

) = j�j

�1

b

h(

�

j�j

): (4.6)

The function h(x) = jxj

1�n

is clearly radial, which is to say that its value at a point

x only depends on jxj. We shall next show that

b

h = bg

1

+ bg

2

is radial, too, and hence

b

h(�=j�j) = C 2 C is a constant. An equivalent characterization of the radiality of a

function � is that �(Tx) = �(x) whenever T is a rotation, i.e. whenever T : R

n

! R

n

is a linear operator for which jdet T j = 1.

Let T be a rotation. Then its transpose T

0

and the inverse of its transpose T

0

�1

are

rotations, as well, since

detT

0

= det T = 1 and detT

0

�1

=

1

detT

0

=

1

det T

= 1: (4.7)

The change of variable y = T

0

x, x = T

0

�1

y, dx = jdet T

0

�1

j dy = dy yields

bg

1

(T�) = (2�)

�n=2

Z

g

1

(x) e

�ix�T�

dx = (2�)

�n=2

Z

g

1

(x) e

�i(T

0

x)��

dx

= (2�)

�n=2

Z

g

1

(T

0

�1

y) e

�iy��

dy = bg

1

(�);

because g

1

(T

0

�1

y) = g

1

(y). Analogously,

bg

2

(T�) = lim

R!1

Z

jxj�R

g

2

(x) e

�ix�T�

dx

= lim

R!1

Z

jyj�R

g

2

(T

0

�1

y) e

�iy��

dy = bg

2

(�):

(4.8)

Thus

b

h is radial and can be written as

b

h(�) = C j�j

�1

. The value of the constant

C will be calculated using the function v(x) = e

�jxj

2

=2

2 S, which has the property

that bv = v, as the following calculations show:

bv(�) = (2�)

�n=2

Z

R

n

e

�

jxj

2

2

e

�ix��

dx

= e

�

j�j

2

2

(2�)

�n=2

Z

R

n

e

�

(x+i�)

2

2

dx

= e

�

j�j

2

2

(2�)

�n=2

n

Y

j=1

Z

1

�1

e

�

(x

j

+i�

j

)

2

2

dx

j

:

(4.9)
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For evaluating this integral, note that since e

�z

2

=2

is analytic everywhere, its closed

line integral along C, the rectangle with vertices at R, �R, �R + i�

j

and R + i�

j

,

vanishes:

Z

1

�1

e

�

(x

j

+i�

j

)

2

2

dx

j

= lim

R!1

�

I

C

e

�

z

2

2

dz +

Z

R

�R

e

�

x

2

j

2

dx

j

+

Z

�

j

0

e

�

(R+it)

2

2

� e

�

(�R+it)

2

2

dt

�

= 0 +

Z

1

�1

e

�

x

2

j

2

dx

j

+ 0 =

p

2

Z

1

�1

e

�t

2

dt =

p

2�:

(4.10)

Therefore

bv(�) = e

�

j�j

2

2

= v(�): (4.11)

For calculating C, we evaluate hh; vi in two di�erent ways. Firstly, using the

Plancherel formula (A.62) and the substitution t = r

2

=2, r = (2t)

1=2

, dt = r dr,

we get

hh(x); v(x)i = hC j�j

�1

; v(�)i = C jS

n�1

j

Z

1

0

r

�1

e

�

r

2

2

r

n�1

dr

= C jS

n�1

j 2

n�3

2

Z

1

0

r

n�3

2

e

�t

dt = C jS

n�1

j 2

n�3

2

�(

n�1

2

);

(4.12)

and secondly,

hh(x); v(x)i = jS

n�1

j

Z

1

0

r

1�n

e

�r

2

2

r

n�1

dr = jS

n�1

j

r

�

2

: (4.13)

Hence,

C =

jS

n�1

j�

1=2

2

�1=2

jS

n�1

j 2

n�3

2

�(

n�1

2

)

=

�

1=2

2

n�2

2

�(

n�1

2

)

: (4.14)

Therefore, as claimed,

FR

1

(�) = b

n

b

h(�) =

�(

n�1

2

)

2�

n+1

2

�

1=2

2

n�2

2

�(

n�1

2

)

j�j

�1

= (2�)

�n=2

j�j

�1

: (4.15)

4.2 Calderón-Zygmund Theory

We shall next aim at justifying the formal calculation in (3.14) that leads to the

result that the Calderón operator �, which can be expressed as

� = �

n

X

j=1

p: v:

@R

1

@x

j

�D

j

; (4.16)
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inverts the Riesz potential (Theorems 3.4 and 3.5). We also want to show that when

calculating the partial derivatives of the Riesz potential, the derivative can be taken

under the integral sign,

D

j

(R

1

� f) = p: v:

@R

1

@x

j

� f: (4.17)

In Equations (4.16) and (4.17) appears the Riesz transform, de�ned as follows:

De�nition 4.2. For n � 2, the operator

p: v:

@R

1

@x

j

� = b

n

(1� n) p: v:

x

j

jxj

n+1

�; j 2 f1; 2; : : : ; ng; (4.18)

is called the j

th

Riesz transform. In one dimension,

p: v:

@R

1

@x

1

� := �p: v:

1

�x

� (4.19)

is called the Riesz transform or the Hilbert transform.

The name Hilbert transform is sometimes used instead of the Riesz transform also

in R

n

, n � 2. Texts that use the notation I

1

f instead of R

1

� f , often write R

j

f for

p: v:

@R

1

@x

j

� f .

Here, �p: v: � stands for principal value convolution, de�ned as follows:

De�nition 4.3. Let n 2 Z

+

and let K : R

n

! C be of the form

K(x) =


(

x

jxj

)

jxj

n

: (4.20)

where 
 : S

n�1

! C is an odd, bounded function. For f 2 L

2

(R

n

), the principal

value convolution associated with K is the function

p: v:K � f(x) = L

2

-lim

"!0

Z

jyj>"

K(y)f(x� y) dy: (4.21)

The kernel K is called a singular convolution kernel, and the operator f 7! p: v:K �f

a singular convolution operator.

1

Observe that for n � 2,

@R

1

@x

j

(x) = b

n

@

@x

j

 

n

X

i=1

x

2

i

!

1�n

2

= b

n

1� n

2

 

n

X

i=1

x

2

i

!

�1�n

2

2x

2

j

= b

n

(1� n)

x

j

jxj

n+1

= b

n

(1� n)

�

j

r

n

(4.22)

1

The usual de�nition of a singular convolution kernel admits somewhat more general functions,

but to simplify the treatment, we shall con�ne our study to functions whose radial part is odd and

bounded.
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is just the partial derivative of the Riesz kernel, but for n = 1, (4.22) does not make

sense, so (4.19) must be seen as the de�nition of p: v:

@R

1

@x

1

�.

We shall now �rst derive some results of the Calderón-Zygmund theory, concerning

the continuity properties of singular convolutions operators and their Fourier trans-

forms. They will be applied in Section 4.3 for �nding answers to the questions about

the Calderón operator and the derivative of the Riesz potential. Our derivation will

largely follow [Ner].

The results will mostly be needed when n � 2. The case n = 1 will, be required

for two-dimensional computed tomography, since the proof of Theorem 5.17 uses the

Calderón-Zygmund theory results in R

n�1

.

Many of the following facts would be simpler to derive in one dimension. As the

main focus is on n � 2, we shall not treat that situation separately, but only consider

general n 2 Z

+

, which covers n = 1 as a special case.

Our �rst result is that the Fourier transform of a truncated convolution kernel is

uniformly bounded, and has a pointwise limit as the truncation radii are taken to

zero and in�nity:

Lemma 4.4. For n 2 Z

+

, let 
 : S

n�1

! C be an odd, bounded function and

K(x) =


(

x

jxj

)

jxj

n

; K

";�

(x) =

(

K(x); " < jxj < �

0; otherwise:

(4.23)

Then there is a constant A > 0 such that

j

b

K

";�

(�)j � A for all � 2 R

n

n f0g and all "; � > 0; (4.24)

and the limit

b

K(�) = lim

"!0

�!1

b

K

";�

(�) (4.25)

exists for all � 2 R

n

n f0g.

Proof. Fix � 2 R

n

n f0g and write � = j�j. Introducing spherical coordinates, with '

measuring the angle between x and �, yields for x 6= 0

r = jxj; � =

x

jxj

; dx = r

n�1

dr d�; x � � = r� cos'; (4.26)

and

b

K

";�

(�) = (2�)

�n=2

Z

"<jxj<�

K(x) e

�ix��

dx

= (2�)

�n=2

Z

S

n�1


(�)

Z

�

"

e

�ir� cos'

dr

r

d�:

(4.27)

In the inner integral, make the substitution s = �r, ds = � dr to get

b

K

";�

(�) = (2�)

�n=2

Z

S

n�1


(�)

Z

��

"�

e

�is cos'

ds

s

d�: (4.28)
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Since 
 is an odd function,

Z

S

n�1


(�) d� = 0 (4.29)

and

Z

S

n�1


(�) d�

Z

�

"

�

(0;1)

(s) ds = 0: (4.30)

Thus,

b

K

";�

(�) = (2�)

�n=2

Z

S

n�1


(�) I

";�

d�; (4.31)

where

I

";�

(�) =

Z

��

"�

e

�is cos'

� �

(0;1)

(s)

s

ds (4.32)

It now su�ces to �nd a function g 2 L

1

(S

n�1

) that dominates the absolute value of

the inner integral I

";�

:

jI

";�

(�)j � g(�) for all "; � � 0: (4.33)

In fact, if we �nd such a g, we immediately get the estimate

j

b

K

";�

(�)j � (2�)

�n=2

sup

�2S

n�1

j
(�)j

Z

S

n�1

g(�) d� =: A; (4.34)

proving the �rst part of the claim, and the second part follows from Lebesgue's

theorem of dominated convergence: As "! 0 and � !1,


(�)I

";�

(�)! 
(�)I

0;1

(�) pointwise (4.35)

and j
(�)I

";�

(�)j � j
(�)j g(�) 2 L

1

(S

n�1

), whence

b

K

";�

(�) =

Z

S

n�1


(�)I

";�

(�) d� !

Z

S

n�1


(�)I

0;1

(�) d�; (4.36)

which is �nite.

We now choose

g(�) = �2 ln j cos' j+ C; (4.37)

where C <1 is a constant, and show that g 2 L

1

(S

n�1

) and that (4.33) holds with

an appropriate choice of C.

Since changing the sign of cos' only changes I

";�

(�) to its complex conjugate, we

may assume that cos' > 0. We prove (4.33) separately in the three cases

1. "� � 1 � ��,

2. "� > 1,

3. �� < 1.
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In case 1, I

";�

(�) = I

1

+ I

2

, where

I

1

=

Z

1

"�

e

�is cos'

� 1

s

ds and I

2

=

Z

��

1

e

�is cos'

s

ds: (4.38)

Because je

iu

� 1j = je

iu=2

(e

iu=2

� e

�iu=2

)j = j2i sin

u

2

j � juj,

jI

1

j �

Z

1

"�

s cos'

s

ds � 1: (4.39)

The substitution t = s cos', dt = ds cos' gives us

jI

2

j = j

Z

�� cos'

cos'

e

�it

t

dtj

�

Z

1

cos'

dt

t

+

�

�

�

�

Z

�� cos'

1

e

�it

t

dt

�

�

�

�

� � ln cos'+C

1

;

(4.40)

where

C

1

= sup

v>1

�

�

�

�

Z

v

1

e

�iu

u

du

�

�

�

�

(4.41)

is �nite, since it is the supremum of a continuous function de�ned on [1;1) whose

limit at in�nity is �nite:

�

�

�

�

Z

1

1

e

�iu

u

du

�

�

�

�

=

�

�

�

�

i

�

1

1

e

�iu

u

+ i

Z

1

1

e

�iu

u

2

du

�

�

�

�

� j � ie

�i

j+

Z

1

1

du

u

2

<1:

(4.42)

Thus in case 1, jI

";�

(�)j � jI

1

j+ jI

2

j � � ln cos'+ C

1

+ 1.

In case 2, I

";�

(�) = I

2

� I

3

, where

I

3

=

Z

"�

1

e

�is cos'

s

ds; (4.43)

which is of the same form as I

2

above, with � replaced by ". Thus, we get the same

estimate for I

3

as for I

2

, and jI

";�

(�)j � jI

2

j+ jI

3

j � �2 ln cos'+ 2C

1

.

In case 3,

jI

";�

(�)j �

Z

��

"�

�

�

�

�

e

�is cos'

� 1

s

�

�

�

�

ds

�

Z

1

0

�

�

�

�

e

�is cos'

� 1

s

�

�

�

�

ds �

Z

1

0

s cos'

s

ds � 1:

(4.44)

Therefore with C = 2C

1

+ 1,

jI

";�

(�)j � � ln cos'+ C = g(�) (4.45)
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in all three cases, proving (4.33). The fact that g 2 L

1

(S

n�1

) can easily be veri�ed

using the spherical coordinates of Lemma A.13: If n > 2,

Z

S

n�1

� ln j cos' j d� = �2

Z

S

n�1

+

(�)

ln cos'd�

= �2 jS

n�2

j

Z

�=2

0

ln cos' sin

n�2

'd'

� 2 jS

n�2

j

Z

�=2

0

� sin' ln cos'd'

= 2 jS

n�2

j

�

�=2

0

cos' ln cos'� cos'

= 2 jS

n�2

j <1;

(4.46)

and if n = 2,

Z

S

1

� ln j cos' j d� = �4

Z

�=2

0

'

2

2

+ '

4

b(') d' <1; (4.47)

where b is a bounded function.

The case n = 1 would be quite simple to handle all the way on its own, but this

would be unnecessary, as the treatment above covers it as well. Now S

0

= f�1;+1g

and

Z

S

0

f(x) dx = f(�1) + f(1): (4.48)

The angle between x and � is either 0 or �, and g(�1) = ln j� 1 j + C = C, so

jjgjj

L

1

(S

0

)

= C +C <1.

Not only do we know that

b

K exists, we know how to calculate it:

Lemma 4.5. Let n 2 Z

+

and let K be of the form

K(x) =


(

x

jxj

)

jxj

n

; (4.49)

where 
 : S

n�1

! C is an odd, bounded function, and let

b

K be as in Lemma 4.4.

Then for all � 6= 0,

b

K(�) = �i� (2�)

�n=2

Z

S

n�1

+

(�)


(�) d�: (4.50)

Proof. We use the same notation as in the proof of Lemma 4.4:

� = j�j; r = jxj; � =

x

jxj

; dx = r

n�1

dr d�; x � � = r� cos' (4.51)

and

b

K

";�

(�) = (2�)

�n=2

Z

S

n�1


(�)

Z

��

"�

e

�is cos'

s

ds d�: (4.52)
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Lemma 4.4 shows that when � 6= 0, the limit

b

K(�) = lim

�!0

(2�)

�n=2

Z

S

n�1


(�)

Z

1

�

e

�is cos'

s

ds d� (4.53)

exists. We now use the fact that 
 is odd and note that if we think of ' 2 [0; �] as

a function of � 2 S

n�1

, cos'(��) = cos(� � '(�)) = � cos'(�). Hence

Z

S

n�1


(�)

Z

1

�

e

�is cos'

s

ds d� =

Z

S

n�1

+

(�)


(�)

Z

1

�

e

�is cos'

� e

is cos'

s

ds d�

=

Z

S

n�1

+

(�)


(�)

Z

1

�

�2i sin(s cos')

s

ds d�:

(4.54)

The change of variable t = 2�s cos', dt = 2� cos'ds leads to

b

K(�) = �2i (2�)

�n=2

lim

�!0

Z

S

n�1

+

(�)


(�)

Z

1

�

sin t

t

dt d�

= �i� (2�)

�n=2

Z

S

n�1

+

(�)


(�) d�;

(4.55)

as claimed, since the inner integral evaluates to �=2, which can be seen as follows:

If g 2 L

2

(R) is the triangular function g(x) = max(0; 1 � jxj=2), then

p

2� bg(�) =

Z

0

�2

(1 +

x

2

) e

�ix�

dx+

Z

2

0

(1�

x

2

) e

�ix�

dx

=

Z

2

0

(1�

y

2

) e

iy�

dy +

Z

2

0

(1�

x

2

) e

�ix�

dx

=

Z

2

0

(1�

x

2

) 2 cos x� dx

= 2

�

2

0

sinx�

�

�

�

2

0

x sinx�

�

+

Z

2

0

sinx�

�

dx

=

1� cos 2�

�

2

;

(4.56)

and the inverse Fourier transform gives

�

2

=

�

2

g(0)

=

�

2

1

p

2�

Z

1

�1

bg(�) e

i0�

d�

=

�

2

1

p

2�

Z

1

�1

1

p

2�

1� cos 2�

�

2

d�

= �

1

4

�

1

�1

1� cos 2�

�

+

1

2

Z

1

�1

sin 2�

�

d�

= 0 +

1

2

Z

1

�1

sinx

x

dx

=

Z

1

0

sinx

x

dx:

(4.57)



4.2. Calderón-Zygmund Theory 28

Aiming at establishing continuity results for the operator p: v:K� : L

2

! L

2

and

showing that a certain form of the convolution theorem (A.60) holds, we shall �rst

prove the existence of the convolution K

";1

� f truncated from below:

Lemma 4.6. Assume that n 2 Z

+

, f 2 L

2

(R

n

), 
 2 L

1

(S

n�1

) and let K and K

";�

be as in Lemma 4.4. Then

K

";1

� f(x) =

Z

jyj>"

K(y)f(x� y) dy (4.58)

exists almost everywhere.

Proof. Because

jK

";1

� f(x)j �

Z

jyj>"

jK(y)jjf(x� y)j dy =: I(x); (4.59)

it su�ces to show that I(x) is locally integrable, because in that case it must be

�nite almost everywhere. Let B � B(0; R

B

) � R

n

be compact. Fubini's theorem

yields

Z

B

jI(x)j dx =

Z

B

Z

jyj>"

j
(

y

jyj

)j

jyj

n

jf(x� y)j dy dx

=

Z

B

Z

S

n�1

j
(�)j

Z

1

"

jf(x� r�)j r

�1

dr d� dx

=

Z

S

n�1

j
(�)j

Z

B

Z

1

"

jf(x� r�)j r

�1

dr dx d�

(4.60)

since the integrand is non-negative. We use Hölder's inequality twice, �rst in the

innermost integral to get

Z

1

"

jf(x� r�)j r

�1

dr �

s

Z

1

"

r

�2

dr

s

Z

1

"

jf(x� r�)j

2

dr

=

1

p

"

s

Z

1

"

jf(x� r�)j

2

dr

(4.61)

and then in the middle integral to get

Z

B

Z

1

"

jf(x� r�)j r

�1

dr dx �

1

p

"

Z

B

s

Z

1

"

jf(x� r�)j

2

dr dx

�

s

m(B)

"

Z

B

Z

1

"

jf(x� r�)j

2

dr dx

�

s

m(B)

"

Z

B

Z

1

�1

jf(x� r�)j

2

dr dx:

(4.62)

Because B � fx

0

+ t� 2 R

n

jx

0

� � = 0; jtj < R

B

g, the change of variable x = x

0

+ t�,
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dx = dx

0

dt gives us

s

m(B)

"

Z

B

Z

1

�1

jf(x� r�)j

2

dr dx

�

s

m(B)

"

Z

R

B

�R

B

Z

�

?

Z

1

�1

jf(x

0

+ t� � r�)j

2

dr dx

0

dt

=

s

m(B)

"

Z

R

B

�R

B

jjf jj

2

L

2

dt =

r

2R

B

m(B)

"

jjf jj

L

2
;

(4.63)

whence we conclude that

Z

B

jI(x)j dx � jj
jj

L

1

r

2R

B

m(B)

"

jjf jj

L

2
<1; (4.64)

as claimed.

We are now ready to show that p: v: K� is a continuous operator on L

2

:

Theorem 4.7 (Calderón-Zygmund). Assume that n 2 Z

+

, let 
 : S

n�1

! C be

an odd, bounded function and let

K(x) =


(

x

jxj

)

jxj

n

; K

";�

(x) =

(

K(x); " < jxj < �

0; otherwise

(4.65)

and

b

K(�) = lim

"!0

�!1

b

K

";�

(�): (4.66)

Then for all f 2 L

2

(R

n

),

(a) there exists a constant B > 0, independent of ", �, and f , such that

jjK

";�

� f jj

L

2 � Bjjf jj

L

2 (4.67)

(b) the limit

~

f := L

2

-lim

"!0

�!1

K

";�

� f = p: v:K � f (4.68)

exists

(c) the Fourier transform of

~

f satis�es

F(

~

f) = (2�)

n=2

b

K

^

f and jj

~

f jj

L

2
�M jjf jj

L

2
; (4.69)

where M = (2�)

n=2

sup

�2R

n

nf0g

j

b

K(�)j <1

(d) if f is in addition Hölder-�-continuous for some � > 0, i.e. for all x 2 R

n

there exist constants �; C > 0 such that

jf(x)� f(y)j < C jx� yj

�

whenever jx� yj � �; (4.70)

then the pointwise limit

lim

"!0

�!1

K

";�

� f(x) (4.71)

exists for all x 2 R

n

and it equals

~

f(x) almost everywhere.
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Proof. Lemma 4.4 asserts that j

b

K

";�

j � A for some �xed A > 0, whence the Parseval

formula (A.61) and the Convolution theorem (A.60) imply part (a):

jjK

";�

� f jj

L

2 = jjF(K

";�

� f)jj

L

2 = (2�)

n=2

jj

b

K

";�

^

f jj

L

2

� (2�)

n=2

A jj

^

f jj

L

2
= B jjf jj

L

2

(4.72)

with B = (2�)

n=2

A. If we set

~

f = F

�1

�

(2�)

n=2

b

K

^

f

�

, part (c) is obviously true, since

jj

~

f jj

L

2
= jjF(

~

f)jj

L

2
= (2�)

n=2

jj

b

K

^

f jj

L

2
�M jj

^

f jj

L

2
=M jjf jj

L

2
: (4.73)

where M = (2�)

n=2

sup

�2R

n

nf0g

j

b

K(�)j � B <1. This

~

f satis�es (b), too, since

jjK

";�

� f �

~

f jj

L

2
= jjF(K

";�

� f �

~

f)jj

L

2

= jj(

b

K

";�

�

b

K)

^

f jj

L

2

"!0; �!1

�������! 0;

(4.74)

as Lebesgue's theorem of dominated convergence implies: Because j

b

K

";�

�

b

Kj � 2A,

j(

b

K

";�

�

b

K)

2

^

f

2

j � 4A

2

j

^

f j

2

(4.75)

which is in L

1

since jj4A

2

j

^

f j

2

jj

L

1 = 4A

2

jj

^

f jj

2

L

2

= 4A

2

jjf jj

2

L

2

<1. As, in addition,

(

b

K

";�

(�)�

b

K(�))

2

^

f(�)

2

! 0 for almost all � (4.76)

by Lemma 4.4, Lebesgue's theorem asserts that

jj(

b

K

";�

�

b

K)

^

f jj

2

L

2

= jj(

b

K

";�

�

b

K)

2

^

f

2

jj

L

1

"!0; �!1

�������! jj0jj

L

1 = 0: (4.77)

Part (d) remains to be proved. Fix x 6= 0 and let 0 < " < �. By Lemma 4.6, K

�;1

�f

exists. Because 
 is odd and bounded,

Z

"�jyj��


(

y

jyj

)

jyj

n

f(x) dy = f(x)

Z

�

"

dr

r

Z

S

n�1


(�) d� = 0; (4.78)

whence

jK

";1

� f(x)�K

�;1

� f(x)j =

�

�

�

Z

"�jyj��


(

y

jyj

)

jyj

n

f(x� y) dy

�

�

�

=

�

�

�

Z

"�jyj��


(

y

jyj

)

jyj

n

�

f(x� y)� f(x)

�

dy

�

�

�

�

Z

"�jyj��

j
(

y

jyj

)j

jyj

n

�

�

f(x� y)� f(x)

�

�

dy:

(4.79)

By the assumption about Hölder continuity, jf(x� y)� f(x)j � C jyj

�

and therefore

jK

";1

� f(x)�K

�;1

� f(x)j �

Z

�

"

Z

S

n�1

j
(�)j d� r

�n

Cr

�

r

n�1

dr

� C jj
jj

L

1

jS

n�1

j

�

�

� "

�

�

� C jj
jj

L

1

jS

n�1

j

�

�

�

�!0

��! 0:

(4.80)
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This shows that if �

k

k!1

���! 0, then

�

K

�

k

;1

� f(x)

�

k2N

is a Cauchy sequence, so that

the limit

lim

k!1

K

�

k

;1

� f(x) (4.81)

exists. Since this is true for all sequences (�

k

) converging to 0, this limit is also the

limit lim

�!0

K

�;1

� f(x). Therefore the pointwise limit exists.

Now if "

k

! 0, �

k

!1 and f

k

= K

"

k

;�

k

� f , the sequence f

k

converges to

~

f in L

2

.

Hence there exists a subsequence (f

k

j

) such that for almost all x, f

k

j

(x) !

~

f(x).

On the other hand, since the pointwise limit lim

k!1

f

k

(x) exists, it must be equal

to the limit of the subsequence. Consequently

lim

k!1

f

k

(x) = lim

j!1

f

k

j

(x) =

~

f(x) (4.82)

for almost all x.

It is also true that the pointwise limit

p: v: K � f(x) = lim

"!0

Z

jyj>"

K(y) f(x� y) dy (4.83)

exists for almost all x 2 R

n

even without the condition of Hölder continuity, and

under somewhat looser assumptions about 
. Since we shall not need this result, we

only refer to [Ner, Theorem I.IV.3.8, page 113].

The function

~

f is de�ned above in (4.68) as a principal value limit of truncated

convolutions. It would be pleasant to be able to �pass the limit under the integral�,

i.e., to view

~

f as a convolution of f with some distribution. The following theorem

does this for f 2 D.

Theorem 4.8. Let n 2 Z

+

, let 
 : S

n�1

! C be an odd, bounded function and let

K, K

";�

and

b

K be as in Theorem 4.7. Then p: v: K, de�ned by

hp: v: K; �i = lim

"!0

Z

jxj>"

K(x)�(x) dx; (4.84)

is a tempered distribution and F(p: v: K) =

b

K 2 L

1

(R

n

). Furthermore for f 2 D,

~

f := L

2

-lim

"!0

�!1

K

";�

� f = (p: v: K) � f (4.85)

and

F((p: v: K) � f) = (2�)

n=2

F(p: v: K)F(f): (4.86)

Proof. We begin by showing that p: v: K is a distribution: We shall �rst show that

for all � 2 D, hp: v: K; �i = I

1

+ I

2

is �nite, where

I

1

= lim

"!0

Z

"<jxj<1

K(x)�(x) dx; I

2

=

Z

jxj�1

K(x)�(x) dx: (4.87)
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Since 
 is odd,

Z

"<jxj<1

K(x)�(0) dx = �(0)

Z

S

n�1


(�) d�

Z

1

"

dr

r

= 0 (4.88)

and hence we can write

I

1

= lim

"!0

Z

"<jxj<1

g(x) dx; (4.89)

where g(x) = K(x)(�(x) � �(0)) = K(x)r�(tx) � x for some t 2 [0; 1]. Now, if

C = sup

jtj�1

jr�(tx)j <1 and M

0

= sup

�2S

n�1

j
(�)j; (4.90)

we see that jg(x)j � j
(�)j jxj

�n

jr�(tx)j jxj � CM

0

jxj

1�n

and hence

jI

1

j � CM

0

Z

S

n�1

d�

Z

1

0

r

1�n

r

n�1

dr = CM

0

jS

n�1

j <1: (4.91)

Since also

jI

2

j �

Z

jxj�1

jK(x)�(x)j dx � sup

jxj�1

jK(x)j jj�jj

L

1 <1; (4.92)

we conclude that hp: v: K; �i is �nite for all � 2 D.

Since p: v:K is clearly linear, it remains to show that it is continuous. Let �

k

! �

in D. By the de�nition of convergence in D, there exists an R > 0 such that for all

k 2 N , supp�

k

� B(0; R), and

sup

jxj�R

jr(�

k

(x)� �(x))j �

v

u

u

t

n

X

j=1

sup

jxj�R

�

�

�

@�

k

@x

j

(x)�

@�

@x

j

(x)

�

�

�

2

k!1

���! 0: (4.93)

Hence as above, for some t 2 [0; 1],

jhp: v: K; �

k

� �ij =

�

�

�

lim

"!0

Z

jxj>"


(

x

jxj

)

jxj

n

�

(�

k

(x)� �(x))� (�

k

(0)� �(0))

�

dx

�

�

�

� lim

"!0

Z

R

"

Z

S

n�1

j
(�)j

r

n

jr(�

k

� �)(tx)j jxj r

n�1

dr d�

�M

0

R jS

n�1

j sup

jxj�R

jr(�

k

� �)(x)j

k!1

���! 0;

which shows that p: v:K is continuous and consequently a distribution.

To show that this distribution is tempered, �rst consider the distribution u =

(1 + jxj

2

)

�1

(p: v: K). Let � 2 D be such that �(x) = 1 for jxj � 1; for instance

the function ~�

1;2

of (A.34). Write u

1

= �u, u

2

= u � u

1

. Now u

1

2 S

0

, which is

seen as follows: If � 2 S, �� 2 D and hu

1

; �i = hu; ��i is �nite. For continuity, let

�

k

! � in S. Thus also ��

k

! �� in D, since supp ��

k

� supp � is compact, and

for all m 2 N,

sup

x2supp �

j�j�m

�

�

�

@

�

(��

k

)� @

�

(��)

�

(x)j

� sup

x2supp �

j�j�m

X

���

c

�;�

j@

�

�(x)j j@

���

(�

k

� �)(x)j

k!1

���! 0;

(4.94)
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because j@

���

(�

k

� �)(x)j � jj�

k

� �jj

0;���

! 0. Therefore hu

1

; �

k

� �i = hu; ��

k

�

��i ! 0.

Also u

2

is a tempered distribution because

jju

2

jj

L

1
�

Z

jxj�1

jK(x)j

1 + jxj

2

dx =

Z

S

n�1

j
(�)j d�

Z

1

1

dr

r + r

3

<1: (4.95)

Therefore u = u

1

+ u

2

2 S

0

. Now since

hp: v: K; �i = h(1 + jxj

2

)u; �i = hu; (1 + jxj

2

)�i (4.96)

and (1 + jxj

2

)� 2 S whenever � 2 S, we see that p: v:K is a tempered distribution.

The estimate

jh

~

f �K

";1

� f; �ij � jj

~

f �K

";1

� f jj

L

2
jj�jj

L

2

"!0

��! 0; (4.97)

yields

h

~

f; �i = lim

"!1

hK

";1

� f; �i

= lim

"!1

hK

";1

;

�

f � �i

= lim

"!1

Z

jyj>"

K(y)

�

f � �(y) dy

= hp: v: K;

�

f � �i

= hp: v: K � f; �i:

(4.98)

This shows that (4.85) holds.

For proving (4.86), choose a sequence of functions �

k

2 S such that �

k

! p: v:K in

S

0

. Using the de�nition of convergence in S

0

and the convolution theorem (A.60) for

two functions both in D � L

1

, we get that for all � 2 S,

hF((p: v: K) � f); �i = hp: v:K � f;

b

�i = hp: v: K;

�

f �

b

�i = lim

k!1

h�

k

;

�

f �

b

�i

= lim

k!1

hF(�

k

� f); �i = lim

k!1

h(2�)

n=2

b

�

k

^

f; �i

= lim

k!1

h(2�)

n=2

�

k

;F(

^

f�)i = h(2�)

n=2

p: v:K;F(

^

f�)i

= h(2�)

n=2

F(p: v: K)F(f); �i;

(4.99)

as claimed.

Aiming at establishing the fact that F(p: v: K) =

b

K, construct a family of functions

g

�

2 D, � > 0, such that given any R > 0,

bg

�

(�) 6= 0 for all � 2 B(0; R) (4.100)

when � is su�ciently large. Such functions are given, for example, by

g

�

(x) := �

�

~�

0;1

(x) =

(

exp

�

1 +

1

�

2

jxj

2

�1

�

; jxj < 1=�

0; jxj � 1=�;

(4.101)
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which can be seen as follows: Because

bg

1

(0) =

Z

g

1

(x) dx > 0; (4.102)

and bg

1

2 S is continuous, bg

1

(�) 6= 0 in some neighbourhood B(0; ~�). By (A.58),

bg

�

(�) = �

�n

bg

1

(�=�) 6= 0 when j�j < �~�. Hence, choosing � � R=~� ensures that

bg

�

(�) 6= 0 when � 2 B(0; R).

Now for any � 2 D, let R

�

be such that supp� � B(0; R

�

) and choose � so large

that bg

�

(�) 6= 0 for all � 2 B(0; R

�

+ 1). Then by (4.85) and (4.86),

hF(p: v: K); �i =

�

F(p: v: K);

bg

�

~�

R

�

;R

�

+1

bg

�

�

�

=

�

F(p: v: K) bg

�

;

~�

R

�

;R

�

+1

bg

�

�

�

=

*

(2�)

�n=2

F

�

L

2

-lim

"!0

�!1

K

";�

� g

�

�

;

~�

R

�

;R

�

+1

bg

�

�

+

;

(4.103)

whence Theorem 4.7(c) implies that

hF(p: v: K); �i =

�

b

K bg

�

;

~�

R

�

;R

�

+1

bg

�

�

�

= h

b

K;�i: (4.104)

Consequently F(p: v: K) =

b

K, which is essentially bounded by Theorem 4.7(c).

The principal results of the previous theorems can be summarized as

Corollary 4.9. Let n 2 Z

+

and let K : R

n

! C be of the form

K(x) =


(

x

jxj

)

jxj

n

(4.105)

where 
 : S

n�1

! C is an odd, bounded function. Then the essentially bounded

function F(p: v: K) is given almost everywhere by

F(p: v: K)(�) = �i� (2�)

�n=2

Z

S

n�1

+

(�)


(�) d�: (4.106)

For all f 2 L

2

,

F(p: v: K � f) = (2�)

n=2

F(p: v: K)

^

f (4.107)

and

jjp: v: K � f jj

L

2
� (2�)

n=2

jjF(p: v: K)jj

L

1

jjf jj

L

2
: (4.108)

4.3 Riesz Transforms

The results of the Calderón-Zygmund theory, derived in the previous section, can now

be applied to the Riesz transforms. This will enable us to to calculate the derivatives

of the Riesz potential, and to �nally show that �R

1

� f = f in Chapter 5.
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Theorem 4.10. Let n 2 Z

+

. For almost all � 2 R

n

,

F

�

p: v:

@R

1

@x

j

�

(�) = i (2�)

�n=2

�

j

j�j

: (4.109)

The Riesz transform p: v:

@R

1

@x

j

� is a bounded operator from L

2

(R

n

) to L

2

(R

n

), and

F

�

p: v:

@R

1

@x

j

� f

�

(�) = i

�

j

j�j

^

f(�) (4.110)

for all f 2 L

2

(R

n

).

Proof. For n � 2, recall that

@R

1

@x

j

(x) = b

n

(1� n)

x

j

jxj

n+1

= b

n

(1� n)

�

j

jxj

n

: (4.111)

First assume that j�j = 1 and choose an orthonormal basis (u

1

; : : : ; u

n

) of R

n

with

u

1

= �, so that

�

j

=

n

X

k=1

(� � u

k

)u

k

j

= (� � �)�

j

+

n

X

k=2

(� � u

k

)u

k

j

: (4.112)

Using Corollary 4.9, with 
(�) = �

j

, which is clearly an odd and bounded function,

we have that almost everywhere

F

�

p: v:

@R

1

@x

j

�

(�)

= �

i� b

n

(1� n)

(2�)

n=2

 

�

j

Z

S

n�1

+

(�)

� � � d� +

n

X

k=2

u

k

j

Z

S

n�1

+

(�)

� � u

k

d�

!

: (4.113)

For k 6= 1, the integrand � � u

k

is positive on one half of S

n�1

+

(�) and negative but

equal in absolute value on the other half, whence all but the �rst term in the sum

vanish. (See Figure 4.1.)

Using the spherical coordinates of Lemma A.13 with � � � = x

1

= cos',

Z

S

n�1

+

(�)

� � � d� = jS

n�2

j

Z

�=2

0

cos' sin

n�2

'd' = jS

n�2

j

�

�=2

0

sin

n�1

'

n� 1

=

jS

n�2

j

n� 1

:

(4.114)

Hence

F

�

p: v:

@R

1

@x

j

�

(�) = �

i�

(2�)

n=2

1

� jS

n�2

j

(1� n) �

j

jS

n�2

j

n� 1

= i (2�)

�n=2

�

j

(4.115)

as claimed, since we assumed that j�j = 1. If then j�j 6= 1 and � 6= 0, we see

from (4.106) that since S

n�1

+

(�) only depends on the direction of � and not on its

absolute value,

F

�

p: v:

@R

1

@x

j

�

(�) = F

�

p: v:

@R

1

@x

j

��

�

j�j

�

= i (2�)

�n=2

�

�

j�j

�

j

= i (2�)

�n=2

�

j

j�j

:

(4.116)
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k

ukθ. positive

ukθ. negative

u1ξ=

S

u

n

θ

-1
+ (ξ)

ukθ.

Figure 4.1: The integrand � �u

k

, k 6= 1, is positive on one half of S

n�1

+

(�)

and negative but equal in absolute value on the other half.

In the special case n = 1

@R

1

@x

(x) =


(

x

jxj

)

jxj

(4.117)

where 
(�) = ��=�, and

S

0

+

(�) =

�

�

j�j

	

=

(

f1g; � > 0

f�1g; � < 0:

(4.118)

Therefore

F

�

p: v:

@R

1

@x

�

(�) = �

i�

p

2�

Z

f

�

j�

g

�

�

�

d� =

i

p

2�

�

j�j

(4.119)

by Corollary 4.9, as claimed.

Boundedness and (4.110) follow from (4.108) and (4.107).

We are now ready to derive the representation of �f as a sum of Riesz transforms

of the derivatives of f .

Theorem 4.11. For all n 2 Z

+

, the Calderón operator � can be expressed as

� = �

n

X

j=1

p: v:

@R

1

@x

j

�D

j

: (4.120)

It is a continuous operator from H

1

(R

n

) to L

2

(R

n

).
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Proof. Write �

0

for the operator on the right hand side of (4.120). If f 2 H

1

, its

�rst order distribution derivatives D

j

f 2 L

2

� S

0

satisfy

jjD

j

f jj

L

2 = jjF(D

j

f)jj

L

2 = jj�

j

^

f jj

L

2 � jj(1 + j�j

2

)

1=2

^

f jj

L

2 = jjf jj

H

1 : (4.121)

By Theorem 4.7, jjp: v:

@R

1

@x

j

�D

j

f jj

L

2 �M

j

jjD

j

f jj

L

2 for some M

j

<1. Therefore,

jj�

0

f jj

L

2
� Cjjf jj

H

1
; C =

n

X

j=1

M

j

; (4.122)

showing that �

0

: H

1

! L

2

is continuous. By Corollary 4.9, Theorem 4.10 and

Equation (A.57),

F

�

p: v:

@R

1

@x

j

�D

j

f

�

= (2�)

n=2

F

�

p: v:

@R

1

@x

j

�

F(D

j

f)

= i

�

j

j�j

i �

j

^

f = �

�

2

j

j�j

^

f

(4.123)

and hence

F(�

0

f) =

P

n

j=1

�

2

j

j�j

^

f = j�j

^

f: (4.124)

Therefore, �

0

= �.

The following theorem shows that in the partial derivatives of the Riesz potential,

the derivative can be taken under the integral sign if the integral is understood as a

principal value integral.

Its proof uses Theorems A.7 and A.8, for the proofs of which we only refer to [Ste] and

[Zie]. This is the only place in this work where a proof relies on outside references,

save of course some very basic results.

Theorem 4.12. If f 2 L

2

(R

n

), then

D

j

(R

1

� f) = p: v:

@R

1

@x

j

� f: (4.125)

Proof. Choose a sequence of test functions �

k

2 D with jjf � �

k

jj

L

2

k!1

���! 0. Theo-

rems 4.1 and 4.10 assert that for all test functions  2 D,

hD

j

(R

1

� �

k

);  i =

�

R

1

� �
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;�

@ 

@x
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�
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�
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(�);�F
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k

(�); i �
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�

i

�

j

j�j

c

�

k

(�);F

�1

( )

�

=

�

p: v:
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1

@x

j

� �

k

;  

�

;

(4.126)
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so that D

j

(R

1

� �

k

) = p: v:

@R

1

@x

j

� �

k

. By Theorem 4.10,

jjD

j

(R

1

� �

k

)jj

L

2
=

�

�

�

�

�

�

�

�

p: v:
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1

@x

j

� �
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�

�

�

�

�

�

�

�

L

2

� C

1

jj�

k

jj

L

2
� C

1

sup

k2N

jj�

k

jj

L

2
; (4.127)

which is �nite since �

k

! f . As L

2

(R

n

) is a re�exive and separable Banach space, the

Banach-Alaoglu theorem (Theorem A.6) implies the existence of a weakly convergent

subsequence (D

j

(R

1

� �

k

l

))

l2N

. This means that there is a v

j

2 L

2

(R

n

) such that

for all test functions  2 D,

hD

j

(R

1

� �

k

l

);  i = (D

j

(R

1

� �

k

l

);  )

l!1

���! (v

j

;  ) = hv

j

;  i: (4.128)

Corollary A.9 shows that for all compact sets E � R

n

there are constants q � 2 and

C

2

> 0 such that

jj�

E

R

1

� gjj

L

q

� C

2

jjgjj

L

2 (4.129)

for all g 2 L

2

, so that R

1

� f and R

1

� �

k

are in L

q

loc

� L

1
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� S

0

and

jj�

E
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� f �R

1

� �

k

)jj

L

q
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2

jjf � �

k
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2
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���! 0: (4.130)

Thus for all test functions  2 D,
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���! 0; (4.131)

which shows that

hD

j

(R

1

� �

k

l

);  i =

�
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� �

k
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;�
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� f);  i:

(4.132)

When combined with (4.128), this implies that

hv

j

;  i = hD

j

(R

1

� f);  i (4.133)

for all  in the dense set D � L

2

, which implies that D

j

(R

1

� f) 2 L

2

is the weak

limit of the subsequence (D

j

(R

1

� �

k

l

))

l2N

.

Again by Theorem 4.10,
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so that

D

j

(R

1

� �

k

l

) = p: v:

@R

1

@x

j

� �

k

l

l!1

���! p: v:
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1
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j

� f strongly. (4.135)

Because strong convergence implies weak convergence, we conclude that D

j

(R

1

�f) =

p: v:

@R

1

@x

j

� f .



Chapter 5

Derivation of the Reconstruction

Formulae

We are now ready to derive rigorously the reconstruction formulae of Theorems

3.7 and 3.9, which will be repeated later on as Corollary 5.19 and Theorem 5.20,

respectively. We shall follow the treatment in [SK].

5.1 The X-ray Domain D

xr

The function to be reconstructed will be allowed to be in the space D

xr

, de�ned as

follows:

De�nition 5.1. For n � 2, the space

D

xr

(R

n

) = fg 2 L

2

(R

n

) j (1 + jxj)

1�n

g 2 L

1

(R

n

)g (5.1)

with norm

jjgjj

xr

= jjgjj

L

2
+ jj(1 + jxj)

1�n

g(x)jj

L

1
(5.2)

is called the x-ray domain over R

n

.

This is a useful domain because R

1

�f behaves nicely for such f that (1+ jxj)

1�n

f 2

L

1

, as will be shown shortly in Theorem 5.3. The requirement that the function

belong to L

2

is natural since the derivations of the properties of the Riesz transform

@R

1

@x

j

� and the Calderón operator � were done in the previous chapter for L

2

spaces.

Note that when n > 2 and f 2 L

2

(R

n

),

jj(1 + jxj)

1�n

f(x)jj

2

L

1

� jj(1 + jxj)

1�n
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2
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2

jjf jj

2

L

2

= jS
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j

Z

1

0

r

n�1

(1 + r)
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dr jjf jj

2

L

2

� jS

n�1

j

�

Z

1

0

dr +

Z

1

1

r
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2

2n�2

r
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dr

�

jjf jj

2

L

2

<1

(5.3)
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so that D

xr

is simply L

2

. In fact after proving Theorem 5.3 we will be able to show

using Corollary A.9 that this is also true when n = 2. However, since Corollary A.9

uses Theorems A.7 and A.8 whose proofs are not presented in this work, we shall

continue to speak of D

xr

following the treatment in [SK], in attempt to minimize the

number of places where proofs rely on outside references. This is also expedient for

emphasizing that the di�erence between the norms jj � jj

L

2
and jj � jj

xr

.

In showing that R

1

�f is well-behaved for f 2 D

xr

, we shall need the following result:

Lemma 5.2. If n � 2, � 2 L

1

(R

n

) and (1 + jxj)

n

�(x) 2 L

1

(R

n

), then

jR

1

� �(x)j � C (1 + jxj)

1�n

�
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1 + jj(1 + jyj)
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�(y)jj

L

1

�

(5.4)

for some constant C > 0, independent of �.

Proof. It su�ces to prove the claim for  (x) := j�(x)j because then

jR

1

� �(x)j � jR

1

j � j�j(x) = R
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�  (x)
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(jj jj
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1
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)
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1
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1
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(5.5)

Observe that

 (x) = (1 + jxj)

�n

(1 + jxj)

n

 (x) �M (1 + jxj)

�n

; (5.6)

whereM := jj(1+jyj)

n

 (y)jj

L

1

is �nite by assumption. Distinguish two cases, jxj < 1

and jxj � 1.

When jxj < 1, divide the range of integration into two parts:

R

1

�  (x) = b

n

Z

jx�yj�1

 (y)

jx� yj

n�1

dy + b

n

Z

jx�yj>1

 (y)

jx� yj

n�1

dy: (5.7)

In the �rst integral, make the change of variable z = y � x, dz = dy and note that

 (y) �M(1 + jxj)

�n

�M . In the second integral, 1=jx� yj

n�1

� 1. Therefore,
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(5.8)

as 2

n�1

(1 + jxj)

1�n

� 1 for jxj < 1.

For jxj � 1, divide the domain of integration into three parts:

R
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jxj

2

b

n
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(5.9)
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When jyj � jxj=2,

jx� yj � jjxj � jyjj = jxj � jyj � jxj �

jxj

2

=

jxj

2

(5.10)

and the �rst integral is majorized by

2

n�1
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n

jxj
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 (y) dy �
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n�1
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jj jj

L

1
: (5.11)

When jxj=2 < jyj < 2 jxj, write x = jxj �, � 2 S

n�1

, and make the change of variable

y = jxj z, dy = jxj

n

dz, with jzj = jyj=jxj 2 (

1

2

; 2). Then jx� yj = jxjj� � zj and the

integral becomes

b
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2

<jzj<2

 (jxj z) jxj

n

j� � zj

n�1

dz: (5.12)

The estimates jxj

n

= (jxjjzj)

n

jzj

�n

� (1 + jxjjzj)

n

2

n

and

 (jxj z) = (1 + jxjjzj)

�n

(1 + jxjjzj)

n

 (jxj z) �M (1 + jxjjzj)

�n

(5.13)

show that the second integral is less than or equal to

2

n

M b

n

jxj

n�1

Z

1

2

<jzj<2

dz

j� � zj

n�1

�

2

n

M b

n

jxj

n�1

Z

jwj<3

dw

jwj

n�1

=

2

n

M b

n

jxj

n�1

jS

n�1

j

Z

3

0

r

n�1

dr

r

n�1

=

2

n

3M b

n

jS

n�1

j

jxj

n�1

:

(5.14)

Finally, when jyj � 2 jxj, the situation is much like when jyj � jxj=2: Now jx� yj �

jjxj � jyjj = jyj � jxj � 2 jxj � jxj = jxj, and the third integral has

b

n

jxj

n�1

Z

jyj�2 jxj

 (y) dy �

b

n

jxj

n�1

jj jj

L

1
(5.15)

as an upper bound.

The upper bounds (5.11), (5.14) and (5.15) for the three integrals in (5.9) combine

to show that the claim holds:

R

1

�  (x) �

(2

n�1

+ 1) b

n

jxj

n�1

jj jj

L

1 +

2

n

3 b

n

jS

n�1

j

jxj

n�1

M

� 2

n

3 b

n

jS

n�1

j (1 + jxj)

n�1

�

jj jj

L

1
+M

�

:

(5.16)

This result helps to show that the condition that (1+ jxj)

1�n

f 2 L

1

is both necessary

and su�cient for R

1

� f to converge absolutely almost everywhere:



5.1. The X-ray Domain D

xr

42

Theorem 5.3. If n � 2 and (1+jxj)

1�n

f(x) 2 L

1

(R

n

), then the convolution integral

R

1

� f(x) converges absolutely for almost almost all x 2 R

n

, and R

1

� f 2 L

1

loc

(R

n

).

Furthermore, there is a constant C > 0 independent of f , such that

�

�

�

Z

R

n

R

1

� f(x)�(x) dx

�

�

�

�

�

�

�

�

(1 + jxj)

1�n

f

�

�

�

�

L

1

�

jj�jj

L

1
+ jj(1 + jxj)

n

�jj

L

1

�

(5.17)

for all measurable functions � : R

n

! C . Conversely, if the convolution integral

R

1

� f(x

0

) converges absolutely for some x

0

2 R

n

, then (1 + jxj)

1�n

f 2 L

1

(R

n

):

Proof. The triangle inequality and Fubini's theorem for non-negative functions show

that

�

�

�

Z

R

n

R

1

� f(x)�(x) dx

�

�

�

=

�

�

�

Z

R

n

Z

R

n

R

1

(x� y)f(y)�(x) dy dx

�

�

�

�

Z

R

n

Z

R

n

R

1

(x� y)jf(y)jj�(x)j dy dx

=

Z

R

n

jf(y)j

Z

R

n

R

1

(y � x) j�(x)j dx dy:

(5.18)

By right of Lemma 5.2,

Z

R

n

jf(y)j

Z

R

n

R

1

(y � x) j�(x)j dx dy

� C

Z

R

n

jf(y)j (1 + jyj)

1�n

dy

�

jj�jj

L

1
+ jj(1 + jyj)

n

�(y)jj

L

1

�

; (5.19)

which proves (5.17) and also shows that R

1

� f 2 L

1

loc

indeed: For any compact

K � R

n

,

Z

K

jR

1

� f(x)j dx �

Z

R

n

R

1

� jf j(x)�

K

(x) dx

� C

�

�

�

�

(1 + jyj)

1�n

f

�

�

�

�

L

1

�

jj�

K

jj

L

1
+ jj(1 + jyj)

n

�

K

(y)jj

L

1

�

<1:

(5.20)

This also implies absolute convergence almost everywhere, for if there were a set

E � R

n

with m(E) > 0 such that R

1

� jf j(x) =1 for all x 2 E, then the regularity

of the Lebesgue measure would assure the existence of a compact set K � E with

m(K) � m(E)�m(E)=2 > 0, and consequently

Z

K

R

1

� jf j(x) =1; (5.21)

in contradiction with the local integrability just proved.

For the converse claim, note that if jx

0

j � 1, 1 + jyj � jx

0

j + jyj � jx

0

� yj, and if

jx

0

j > 1,

1 + jyj � 1 +

jyj

jx

0

j

=

jx

0

j+ jyj

jx

0

j

�

jx

0

� yj

jx

0

j

: (5.22)

Therefore, 1 + jyj � minf1; jx

0

j

�1

g jx

0

� yj and

Z

R

n

�

�

(1 + jyj)

1�n

f(y)

�

�

dy � maxf1; jx

0

j

n�1

g

Z

R

n

jf(y)j

jx

0

� yj

n�1

dy (5.23)

is �nite if R

1

� f(x

0

) converges absolutely.
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It now follows that the x-ray domain D

xr

is actually just the space of square-

integrable functions; the requirement that (1 + jxj)

1�n

f(x) 2 L

1

is satis�ed by all

functions f 2 L

2

:

Corollary 5.4. For all n � 2, D

xr

(R

n

) = L

2

(R

n

).

Proof. If f 2 L

2

, then also jf j 2 L

2

, so that Corollary A.9 asserts that R

1

� jf j 2

L

q

loc

� L

1

loc

. Therefore the convolution integral R

1

� f must converge absolutely

almost everywhere. As this is equivalent to the condition that (1+ jxj)

1�n

f(x) 2 L

1

by Theorem 5.3, we see that f 2 D

xr

. The converse inclusion is clear from the

de�nition of D

xr

.

As already stated after De�nition 5.1 of the x-ray domain D

xr

, we shall not use this

result because its proof refers through Corollary A.9 to Theorems A.7 and A.8 whose

proofs are not presented in this work.

Another property of the x-ray domain is its stability with respect to mollifying with

certain kernels:

Theorem 5.5. If n � 2, g 2 D

xr

(R

n

) and (1 + jxj)

1�n

e(x) 2 L

1

(R

n

), then e � g 2

D

xr

(R

n

) and

jje � gjj

xr

� C jj(1 + jxj)

1�n

e(x)jj

L

1 jjgjj

xr

(5.24)

for some constant C > 0 independent of g and e.

Proof. Young's and Hölder's inequalities (Theorems A.5 and A.1) assert that

jje � gjj

L

2
� jjejj

L

1
jjgjj

L

2

= jj(1 + jxj)

1�n

(1 + jxj)

n�1

ejj

L

1 jjgjj

L

2

� jj(1 + jxj)

1�n

jj

L

1

jj(1 + jxj)

n�1

ejj

L

1
jjgjj

L

2

� jj(1 + jxj)

n�1

ejj

L

1
jjgjj

xr

:

(5.25)

which settles the estimate for the L

2

part of jje�gjj

xr

= jje�gjj

L

2
+jj(1+jxj)

1�n

e�gjj

L

1
.

For the other part, using the fact that

(1 + a

2

)(1 + b)

2

= 1 + 2b+ b

2

+ a

2

+ 2ab+ a

2

b

2

= 1 + (a+ b)

2

+ 2b(1 � a+ a

2

) + a

2

b

2

� 1 + (a+ b)

2

(5.26)

for b � 0, with a = jxj and b = jyj, gives

1 + jx� yj

2

� 1 + (jxj+ jyj)

2

�

�

1 + jxj

2

�

(1 + jyj)

2

(5.27)

and consequently

�

1 + jxj

2

�

1�n

2

�

�

1 + jx� yj

2

�

1�n

2

(1 + jyj)

n�1

: (5.28)
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As 1 + jxj � (1 + jxj

2

)

1=2

, estimate (5.28) and Young's inequality yield

�

�

�

�

(1 + jxj)

1�n

e � g

�

�

�

�

L

1

�

�

�

�

�

�

1 + jxj

2

�

1�n

2

e � g(x)

�

�

�

�

L

1

�

Z

R

n

Z

R

n

je(y)jjg(x � y)j

�

1 + jxj

2

�

1�n

2

dy dx

�

Z

R

n

Z

R

n

�

1 + jx� yj

2

�

1�n

2

jg(x� y)j (1 + jyj)

n�1

je(y)j dy dx

= jje

1

� g

1

jj

L

1
� jje

1

jj

L

1
jjg

1

jj

L

1
;

(5.29)

where

e

1

(x) = (1 + jxj)

n�1

je(x)j and g

1

(x) =

�

1 + jxj

2

�

1�n

2

jg(x)j: (5.30)

Since

jjg

1

jj

L

1
=

�

�

�

�

�

�

�

�

�

�

�

1 + 2 jxj+ jxj

2

1 + jxj

2

�

n�1

2

(1 + jxj)

1�n

g(x)

�

�

�

�

�

�

�

�

�

�

L

1

� 2

n�1

2

�

�

�

�

(1 + jxj)

1�n

g(x)

�

�

�

�

L

1

;

(5.31)

this shows that

�

�

�

�

(1 + jxj)

1�n

e � g

�

�

�

�

L

1

� 2

n�1

2

�

�

�

�

(1 + jxj)

n�1

e

�

�

�

�

L

1

�

�

�

�

(1 + jxj)

1�n

g

�

�

�

�

L

1

� 2

n�1

2

�

�

�

�

(1 + jxj)

n�1

e

�

�

�

�

L

1

jjgjj

xr

;

(5.32)

which together with (5.25) implies the claim with C = 2

(n�1)=2

+ 1.

It is pleasant to know that elements of D

xr

can be approximated using smooth

functions with bounded support.

Lemma 5.6. If n � 2 and f 2 D

xr

(R

n

), then

jjf � �

B(0;R)

f jj

xr

! 0 (5.33)

as R!1. Furthermore, C

1

0

(R

n

) is dense in D

xr

(R

n

).

Proof. Fix f 2 D

xr

and " > 0. As (1 + jxj)

1�n

f 2 L

1

,

Z

jxj>r

1

(1 + jxj)

1�n

jf(x)j dx <

"

4

(5.34)

for some r

1

> 0. Analogously, as f 2 L

2

,

Z

jxj>r

2

jf(x)j

2

dx <

"

2

16

(5.35)

for some r

2

> 0. Thus for R � maxfr

1

; r

2

g =: r

0

,

jjf � �

B(0;R)

f jj

xr

=

Z

jxj>R

(1 + jxj)

1�n

jf(x)j dx+

 

Z

jxj>R

jf(x)j

2

dx

!

1

2

<

"

2

;

(5.36)
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which proves the �rst claim.

Then set f

0

= �

B(0;r

0

)

f and �

�

= e

�

� f

0

with e

�

the approximate delta function

of (A.48), � > 0. As described in Section A.1.1, �

�

2 C

1

and jjf

0

� �

�

jj

L

p

! 0 as

�! 0, for all 1 � p <1 for which f

0

2 L

p

. Because jjf

0

jj

L

1
� jj�

B(0;�)

jj

L

2
jjf jj

L

2
<1,

�

�

�

�

(1 + jxj)

1�n

(f

0

� �

�

)

�

�

�

�

L

1

� jjf

0

� �

�

jj

L

1

<

"

4

when � � �

1

(5.37)

for some �

1

> 0, and because jjf

0

jj

L

2
� jjf jj

L

2
<1,

jjf

0

� �

�

jj

L

2

<

"

4

when � � �

2

(5.38)

for some �

2

> 0. Choosing � = �

maxf�

1

;�

2

g

yields

jjf � �jj

xr

� jjf � f

0

jj

xr

+ jjf

0

� �jj

xr

<

"

2

+

"

4

+

"

4

= ": (5.39)

Since

supp�

�

� fx+ y 2 R

n

jx 2 supp e

�

; y 2 supp f

0

g � B(0; R + �) (5.40)

is compact, � 2 C

1

0

.

Before showing that the relation F(R

1

� f) = j�j

^

f , formally derived in Chapter 3,

holds in D

xr

, we still prove three auxiliary results.

The �rst one shows that the Riesz potential R

1

�g of a non-negative x-ray attenuation

coe�cient g has the superharmonic-type property that its average over a ball is at

most as large as a constant times its value at the centre of the ball. [Fro]

Lemma 5.7 (Frostman's mean value theorem). Let n � 2, h = �

B(0;1)

and

h

�

(x) = �

�n

h(

x

�

) =

(

�

�n

; jxj < �

0; jxj � �:

(5.41)

Then there is a constant C > 0, independent of �, such that for all f 2 D

xr

(R

n

) and

� > 0,

jhR

1

� f; h

�

ij � C R

1

� jf j(0): (5.42)

Proof. Fubini's theorem shows that since the integrand is non-negative,

jhR

1

� f; h

�

ij � b

n

�

�n

Z

B(0;�)

Z

R

n

jf(y)j

jx� yj

n�1

dy dx

= b

n

Z

R

n

jf(y)j

jyj

n�1

I(y; �) dy;

(5.43)

where

I(y; �) =

jyj

n�1

�

n

Z

B(0;�)

dx

jx� yj

n�1

: (5.44)

It su�ces to show that I(y; �) is bounded for all y 2 R

n

, � > 0.
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Distinguish two cases, according to whether jyj < 2� or jyj � 2�. In the �rst case,

0 � I(y; �) �

jyj

n�1

�

n

Z

B(y;3�)

dx

jx� yj

n�1

=

jyj

n�1

�

n

jS

n�1

j

Z

3�

0

r

n�1

dr

r

n�1

=

jyj

n�1

3�

�

n

jS

n�1

j

� 2

n�1

3 jS

n�1

j:

(5.45)

For the second case jyj � 2�, note that x 2 B(0; �) implies that jxj � � � jyj=2 and

thus

jx� yj �

�

�

jyj � jxj

�

�

� jyj �

jyj

2

=

jyj

2

: (5.46)

Therefore,

0 � I(y; �) �

jyj

n�1

�

n

Z

B(0;�)

2

n�1

jyj

n�1

dx =

2

n�1

m(B(0; �))

�

n

= 2

n�1

jB

n

j: (5.47)

This shows that in both cases,

I(y; �) � max

�

2

n�1

3 jS

n�1

j; 2

n�1

jB

n

j

	

=: C: (5.48)

The second auxiliary result is that the (weighted) averages of f and R

1

� f over a

bounded set tend to zero as the diameter of the set grows. This indicates that in

some respect, the mass of those functions is not concentrated at in�nity.

Lemma 5.8. For any e 2 L

1

0

(R

n

), de�ne e

�

(x) = �

�n

e(

x

�

), � > 0. Then

(a) if n 2 Z

+

and

^

f 2 L

1

(R

n

) + L

2

(R

n

), then hf; e

�

i ! 0 as �!1

(b) if n � 2 and f 2 D

xr

(R

n

), then hR

1

� f; e

�

i ! 0 as �!1.

Proof. For claim (a), write f = f

1

+ f

2

with

b

f

1

2 L

1

and

b

f

2

2 L

2

. The claim for f

2

follows from the estimate

jhf

2

; e

�

ij � jjf

2

e

�
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L

1
� jjf

2
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L

2
jje

�
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L

2

= jjf

2
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L

2

s

Z

R

n

�

�2n

je(

x

�

)j

2

dx

= jj

b

f

2

jj

L

2
�

�n=2

s

Z

R

n

je(y)j

2
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� �

�n=2
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b

f

2
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L

2
jjejj

L

1

p

m(supp e)

�!1

���! 0;

(5.49)

where the change of variable y = x=�, dy = �

�n

dx has been used.
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For estimating hf

1

; e

�

i, use Fubini's theorem to see that

hf

1

; e

�

i =

Z

(2�)

�n=2

Z

e

ix��

b

f

1

(�) d� e

�

(x) dx
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�n=2

Z Z

e

ix��

�

�n

e(

x

�

) dx

b

f

1

(�) d�

= (2�)

�n=2
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e

�iy�(���)

e(y) dy

b

f

1

(�) d�

= (2�)

�n=2

Z

be(���)

b

f

1

(�) d�

�!1

���! 0

(5.50)

by Lebesgue's theorem of dominated convergence: The Riemann-Lebesgue lemma

(A.64) tells that the constant function 0 is the pointwise limit of the sequence of

functions be(���)

b

f

1

(�), � 2 Z

+

, and

jbe(���)

b

f

1

(�)j � jjbejj

L

1

j

b

f

1

(�)j � (2�)

�n=2

jjejj

L

1
j

b

f

1

(�)j 2 L

1

: (5.51)

This completes the proof of claim (a).

For claim (b), �rst choose R > 0 so large that supp e � B(0; R). Write h = �

B(0;1)

and h

�

(x) = �

�n

h(x=�) for � > 0. Then with y = x=�, dy = �

�n

dx,

jhR

1
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�
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Z

R

n
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1
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�
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Z
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n

R
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=

Z
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n
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1
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�

Z

B(0;R)
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L

1
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L

1

Z

R

n

R

1

� jf j(�y)h(

y

R

) dy

= jjejj

L

1

Z

R

n

R

1

� jf j(x) �

�n

h(

x

R�

) dx

= R

n

jjejj

L

1

Z

R

n

R

1

� jf j(x) (R�)

�n

h(

x

R�

) dx

= R

n

jjejj

L

1

hR

1

� jf j; h

R�

i;

(5.52)

so that it su�ces to show that hR

1

� jf j; h

~�

i ! 0 as ~� = R� approaches in�nity.

To this end, �rst consider f

1

2 D

xr

with f

1

� 0 and suppf

1

� B(0; r

0

). For jxj � 2r

0

and y 2 supp f

1

,

jx� yj �

�

�

jxj � jyj

�

�

� jxj �

jxj

2

=

jxj

2

(5.53)

and (1 + jyj)

1�n

� (1 + r

0

)

1�n

. Consequently,

R

1

� f

1

(x) = b

n

Z

supp f

1

1

jx� yj

n�1

jf

1

(y)j dy

� b

n

Z

supp f

1

�

2

jxj

�

n�1

(1 + r

0

)

n�1

(1 + jyj)

1�n

jf

1

(y)j dy

= C

1

jjf

1

jj

xr

jxj

1�n

(5.54)
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whenever jxj > 2r

0

, for some constant C

1

> 0 depending on the size of the support

of f

1

.

Now analyse

hR

1

� f

1

; h

�

i = �

�n

Z

jxj<�

R

1

� f

1

(x) dx (5.55)

and split the range of integration into two parts, jxj < 2r

0

and 2r

0

� jxj < �,

provided that � > 2r

0

. In the �rst one, use Lemma 5.3 to see that

�

�n

Z

jxj<2r

0

R

1

� f

1

(x) dx

= �

�n

hR

1

� f

1

; �

B(0;2r

0

)

i

� �

�n

C jj(1 + jxj)

1�n

f

1

jj

L

1

�

jj�

B(0;2r

0

)

jj

L

1
+ jj(1 + jxj)

n

�

B(0;2r

0

)

jj

L

1

�

� �

1�n

C jjf

1

jj

xr

[m(B(0; 2r

0

)) + (1 + 2r

0

)

n

] ;

(5.56)

if we assume that � � 1. In the second part, (5.54) shows than

�

�n

Z

2r

0

�jxj<�

R

1

� f

1

(x) dx � �

�n

C

1

jjf

1

jj

xr

Z

2r

0

�jxj<�

jxj

1�n

dx:

= �

�n

C

1

jjf

1

jj

xr

jS

n�1

j

Z

�

2r

0

r

1�n

r

n�1

dr

� �

1�n

C

1

jjf

1

jj

xr

jS

n�1

j:

(5.57)

Therefore

jhR

1

� f

1

; h

�

ij �

C

2

jjf

1

jj

xr

�

n�1

(5.58)

when � > 1, for some constant C

2

> 0 depending on f

1

.

On the other hand, for any f

2

2 D

xr

with f

2

j

B(0;2)

= 0, Lemma 5.7 and the fact that

1 + jyj � 2 jyj whenever jyj � 2 show that

jhR

1

� f

2

; h

�

ij � C

3

R

1

� f

2

(0)

= C

3

b

n

Z

jyj�2

jyj

1�n

jf

2

(y)j dy

� C

3

b

n

Z

jyj�2

2

n�1

(1 + jyj)

1�n

jf

2

(y)j dy

� C

4

jjf

2

jj

xr

(5.59)

for some constant C

4

> 0 independent of f

2

.

Now given any " > 0, Lemma 5.6 shows that with R � 2 su�ciently large, f

1

:=

�

B(0;R)

jf j satis�es jjjf j � f

1

jj

xr

< "=2C

4

. This implies that with f

2

= jf j � f

1

,

0 � hR

1

� jf j; h

�

i = hR

1

� f

1

; h

�

i+ hR

1

� f

2

; h

�

i �

C

2

jjf

1

jj

xr

�

n�1

+ C

4

"

2C

4

< " (5.60)

when � is su�ciently large.



5.1. The X-ray Domain D

xr

49

The third auxiliary result is that if two distributions agree on all test functions

that vanish at the origin, then their di�erence is a constant times Dirac's delta

distribution.

Lemma 5.9. Let n 2 Z

+

. If f; g 2 S

0

(R

n

) and

hf; �i = hg; �i whenever �(0) = 0; (5.61)

then f = g + c� for some constant c 2 C .

Proof. First show that supp (f � g) � f0g. Let y 6= 0 and choose an open set

U � R

n

with y 2 U , 0 62 U . Then �(0) = 0 for all � 2 D with supp� � U , so that

by assumption hf�g; �i = 0. In other words, every point y 6= 0 has a neighbourhood

on which f � g vanishes, and therefore y 62 supp (f � g).

Since f � g has point support, it must be a �nite linear combination of Dirac's delta

distribution and its derivatives:

f � g =

X

j�j�m

c

�

D

�

�: (5.62)

It su�ces to show that c

0

must be the only non-zero one of the constants c

�

. Assume

contrariwise that c

�

6= 0 and � 6= (0; 0; : : : ; 0). Choose a test function  such that

@

�

 (0) 6= 0 and D

�

 (0) = 0 for all � 6= �; especially  (0) = 0. Such a function

could be, for example, x

�

~�

1;2

. This leads to the contradiction

0 = hf � g;  i =

X

j�j�m

c

�

hD

�

�;  i =

X

j�j�m

c

�

@

�

 (0) = c

�

@

�

 (0) 6= 0: (5.63)

We are now ready to extend to D

xr

the property that R

1

� g corresponds on the

Fourier transformed side to j�j

�1

bg.

Theorem 5.10. Assume that n � 2, f 2 D

xr

(R

n

) and � 2 S(R

n

) with �(0) = 0.

Then

hF(R

1

� f); �i =

Z

j�j

�1

^

f(�)�(�) d�: (5.64)

If, in addition, j�j

�1

^

f(�) 2 L

1

loc

(R

n

), then

F(R

1

� f)(�) = j�j

�1

^

f(�): (5.65)

Proof. First construct functions �

j

2 S

0

such that �(x) =

P

n

j=1

x

j

�

j

(x), as follows.

De�ne the functions [FRS]

�

�

= ~�

2;3

� 2 S a

�

= ~�

3;4

2 C

1

0

�

+

= �� �

�

2 S a

+

= 1� ~�

1;2

2 C

1

(5.66)
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where ~�

"

1

;"

2

is the approximate characteristic function of (A.34). They have the

properties

�

�

(x)=

(

�(x); jxj � 2

0; jxj � 3

a

�

(x) =

(

1; jxj � 3

0; jxj � 4

�

+

(x)=

(

0; jxj � 2

�(x); jxj � 3

a

+

(x) =

(

0; jxj � 1

1; jxj � 2:

(5.67)

Integrating along the straight line from 0 to x gives

�

�

(x) =

Z

1

0

r�

�

(tx) � x dt =

n

X

j=1

x

j

Z

1

0

@�

�

@x

j

(tx) dt; (5.68)

and along the ray starting from x and going away from the origin,

�

+

(x) = �

Z

1

1

r�

+

(tx) � x dt = �

n

X

j=1

x

j

Z

1

1

@�

+

@x

j

(tx) dt: (5.69)

Note that

�

�

(x) = a

�

(x)�

�

(x) =

n

X

j=1

x

j

�

�

j

(x); (5.70)

where

�

�

j

(x) = a

�

(x)

Z

1

0

@�

�

@x

j

(tx) dt and �

+

j

(x) = �a

+

(x)

Z

1

1

@�

+

@x

j

(tx) dt (5.71)

are rapidly decreasing functions: For �

�

j

, this follows from the estimate

jj�

�

j
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�;�

= sup

x2R

n

�

�

�

x

�

X

��

c

�

@



a

�
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1

0

@

��+e
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�

�
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�
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�
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x2R

n

X
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�

�

�
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�
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�
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�
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�

�
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@
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�

�
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�
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�
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�
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�
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0
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�
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(5.72)

For �

+

j

,
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+

j
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�;�
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x2R

n

�

�

�

x

�

X

��

c

�
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+
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�
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n
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�
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�
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�
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�

�
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�2

t
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(5.73)

Note that for �

+

j

(x) to be non-zero, jxj must be greater than 2, and that since t � 1

in the integral, jx

�

j � j(tx)

�

j. As jtxj

2

=

P

n

k=1

(tx)

2e

k

, this yields

jj�

+

j

jj

�;�
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n
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�
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+
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n

X
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c

�
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+
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�+2e

k

;��+e

j

Z
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1

t
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dt <1;

(5.74)
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because although a

+

62 S, all of its derivatives are constant outside B(0; 2), so that

jja

+

jj

0;

<1 for all  2 N

n

.

This gives us the desired functions �

j

:

�(x) = �

�

(x) + �

+

(x) =

n

X

j=1

x

j

�

j

(x); where �

j

= �

�

j

+ �

+

j

2 S: (5.75)

Now R

1

� f 2 L

1

loc

� S

0

by Theorem 5.3, so that Theorem 4.12 shows that

�

j

F(R

1

� f) = �iF (D

j

(R

1

� f)) = �iF

�

p: v:

@R

1

@x

j

� f

�

=

�

j

j�j

^

f(�): (5.76)

Therefore
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1

� f); �i =

n

X
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hF(R

1

� f); �

j

�

j

i

=

n

X
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j

F(R

1

� f); �

j

i

=

n
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�

�

j
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^
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j

�

=

Z
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^
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n
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�

j

�

j

(�) d�

=

Z

j�j
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^

f(�)�(�) d�;

(5.77)

which proves the �rst claim.

Then assume that j�j

�1

^

f 2 L

1

loc

� S

0

, so that

hF(R

1

� f);  i = hj�j

�1

^

f;  i (5.78)

for all  2 S with  (0) = 0. Lemma 5.9 then shows that F(R

1

� f) = j�j

�1

^

f + c�

for some constant c 2 C . It remains to show that c = 0.

Write u = F

�1

(j�j

�1

^

f). Since bu was assumed to be locally integrable and

jj�

R

n

nB(0;1)

j�j

�1

^

f jj

L

2 � jj

^

f jj

L

2 = jjf jj

L

2 � jjf jj

xr

<1; (5.79)

we see that

bu = �

B(0;1)

bu+ �

R

n

nB(0;1)

bu 2 L

1

+ L

2

: (5.80)

Thus for any e 2 C

1

0

with

R

e(x) dx = 1, and e

�

(x) = �

�n

e(x=�),

c = hc; e

�

i = hF

�1

(c�); e

�

i = hR

1

� f; e

�

i � hu; e

�

i

�!1

���! 0 (5.81)

by Lemma 5.8. This completes the proof.
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Note that the condition that j�j

�1

f(�) be locally integrable in Theorem 5.10 is always

true if n > 2, because then

jj�

B(0;R)

(�) j�j

�1

^

f(�)jj

L

1
� jj�
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�
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r
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jjf jj
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(5.82)

or if f 2 L

p

, p > 2, because then p

0

< 2 and n�1�p

0

� 1�p

0

> �1, and consequently

jj�
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(�) j�j
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^

f(�)jj

L

1
� jj�
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jj
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0

jj

^

f jj

L

p

= jS
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j

�

Z

R
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r

n�1�p

0

dr

�

1

p

0

jjf jj

L

p

<1:

(5.83)

5.2 Properties of the Radiograph Operators

In this section, we shall investigate some properties of the divergent beam radiograph

operator D and the parallel beam radiograph operator P, introduced in De�nitions

3.1 and 3.6.

The Riesz potential of an x-ray attenuation density can be calculated from the di-

vergent or parallel beam radiographs:

Lemma 5.11. If n � 2 and f 2 D

xr

(R

n

), then for almost all x 2 R

n

,

1

b

n

R

1

� f(x) =

Z

S

n�1

D

x

f(�) d� =

1

2

Z

S

n�1

P

�

f(E

�

x) d� (5.84)

and the integrals converge absolutely.

Equation (5.84) also holds for all non-negative, measurable functions f , in the sense

that when one of the members is in�nite, so are the other two, and otherwise all three

take the same �nite value.

Proof. If f 2 D

xr

, the changes of variable t = jyj, � = y=jyj, dy = t

n�1

dt d� and

y

0

= �y yield

Z

S

n�1

D

x

f(�) d� =

Z

S

n�1

Z

1

0

f(x+ t�) dt d�

=

Z

R

n

f(x+ y) jyj

1�n

dy

=

Z

R

n

f(x� y

0

) jy

0

j

1�n

dy

0

=

1

b

n

R

1

� g(x);

(5.85)

for almost all x 2 R

n

by Fubini's theorem, since Theorem 5.3 asserts the abso-

lute convergence of the integral. For the second equality in (5.84), observe that
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P

�

f(E

�

x) = D

x

f(�) +D

x

f(��), whence with �

0

= ��,

1

2

Z

S

n�1

P

�

f(E

�

x) d� =

1

2

�

Z

S

n�1

D

x

f(�) d� +

Z

S

n�1

D

x

f(��) d�

�

=

1

2

�

Z

S

n�1

D

x

f(�) d� +

Z

S

n�1

D

x

f(�

0

) d�

0

�

=

1

b

n

R

1

� f(x):

(5.86)

If then f � 0, (5.85) is justi�ed by Fubini's theorem for non-negative functions, and

(5.86) holds equally well.

That D

xr

is a reasonable domain for x-ray attenuation densities, as asserted by

Theorem 5.3, can be formulated in terms of the divergent beam radiograph as follows:

Corollary 5.12. If n � 2 and f 2 D

xr

(R

n

), then for almost all x 2 R

n

, D

x

f is

de�ned almost everywhere on S

n�1

by an absolutely convergent integral and D

x

f 2

L

1

(S

n�1

).

If, on the contrary, (1 + jxj)

1�n

f(x) 62 L

1

(R

n

) and f � 0, then D

x

f 62 L

1

(S

n�1

) for

any x 2 R

n

.

Proof. By the triangle inequality and Lemma 5.11,

Z

S

n�1

jD

x

f(�)j d� �

Z

S

n�1

D

x

jf j(�) d� =

1

b

n

R

1

� jf j(x); (5.87)

which converges for almost all x 2 R

n

by Theorem 5.3. For such x, the absolute

value integral

D

x

jf j(�) =

Z

1

0

jf(x+ t�)j dt (5.88)

must be �nite for almost every � 2 S

n�1

.

If then f � 0 and (1 + jxj)

1�n

f(x) 62 L

1

(R

n

),

Z

S

n�1

D

x

f(�) d� =

1

b

n

R

1

� f(x) =1 (5.89)

for all x 2 R

n

, again by Theorem 5.3.

For the parallel beam radiograph, we have the following result:

Lemma 5.13. Let n � 2 and f 2 D

xr

(R

n

). Then for almost all � 2 S

n�1

, P

�

f is

de�ned almost everywhere on �

?

by an absolutely convergent integral.

If � 2 L

1

(R

n

) and (1 + jxj)

n

� 2 L

1

(R

n

), then

Z

S

n�1

hP

�

f;P

�

�i d� =

2

b

n

hR

1

� f; �i (5.90)

and

�

�

�

Z

S

n�1

hP

�

f;P

�

�i d�

�

�

�

� C jjf jj

xr

h

jj�jj

L

1
+ jj(1 + jxj)

n

�jj

L

1

i

(5.91)

for some constant C.
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Proof. By Lemma 5.11,

2

b

n

hR

1

� f; �i =

�

Z

S

n�1

P

�

f(E

�

x) d�; �

�

=

Z

R

n

Z

S

n�1

Z

1

�1

f(x+ t�) dt d� �(x) dx

=

Z

S

n�1

Z

R

n

Z

1

�1

f(x+ t�) dt �(x) dx d�:

(5.92)

The changes of variable x = x

0

+ s� 2 �

?

� R� = R

n

, dx = dx

0

ds and t

0

= s + t,

dt

0
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�
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The order of integration can be changed above by Fubini's theorem, since the integral

in (5.92) converges absolutely: By Lemma 5.11 and Theorem 5.3,
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for some constant C > 0. This also proves (5.91) because
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(5.95)

For showing the absolute convergence of P

�

f(x) almost everywhere, �x �(x) = e

�jxj

2

.

As jf j satis�es the conditions of the theorem as well as f ,

Z

S

n�1

hP

�

jf j;P

�

�i <1 (5.96)

by (5.91). The integrand hP

�

jf j;P

�

�imust therefore be �nite for almost all � 2 S

n�1

.

For such �, the integral P

�

f(x) must converge absolutely almost everywhere, for

if this were not the case, then there would be a set E � �

?

with m(E) > 0 and

P

�

jf j(x) =1 for all x 2 E. By the regularity of the Lebesgue measure, E could be

chosen compact, so that M := inf

x2E

P

�

�(x) > 0, and consequently
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�
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E
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Z
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The following, so called projection slice theorem shows how the Fourier transform

of the parallel beam radiograph can be obtained from the Fourier transform of the

x-ray attenuation density:

Lemma 5.14. If f 2 L

1

(R

n

) and � 2 S

n�1

, then P

�

f 2 L

1

(�

?

) and

F (P

�

f) (�) =

p

2�

^

f(�) (5.98)

for all � 2 �

?

.

Proof. Obviously,
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1
<1: (5.99)

For f 2 L

1

, the change of variable y = x + t� 2 �

?

� R� = R

n

, dy = dx dt yields,

after noting that � 2 �

?

implies x � � = x � � + t� � � = y � �,
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The following result will also be needed:

Lemma 5.15. If h : R

n

! [0;1) is measurable, then
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j

Z

R

n
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Proof. First observe that S

n�1

\ �

?

�

=

S

n�2

, whence for

~
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Consequently for h : R

n

! [0;1),
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As
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(5.104)

the change of variable y = r� 2 �

?

, dy = r
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dr d� gives
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The projection slice theorem (Lemma 5.14) can now be extended to cover certain

functions in the x-ray domain:

Theorem 5.16. Let f 2 D

xr

(R

n

). Then for almost all � 2 S

n�1

,

(a) j�j
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^
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)
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)
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(d) if j�j

�1

^

f(�) 2 L
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n

), then
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F (P

�

f) (�) =

p
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^
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for almost all � 2 �

?

.

Proof. Claim (a) follows from Lemma 5.15:
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whence
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for almost all x 2 �

?

.

For claim (b), we show that for almost all � 2 S

n�1

,

Z
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for any R > 0. Note that
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and use the estimate
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to see that
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Lemma 5.13 shows that for some constant C
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> 0,
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which is �nite. This proves (b).

For claim (c), choose a sequence of functions f

k

2 L

1

\D

xr

converging to f in the

D
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0
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Then
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by (5.114). This convergence in the L
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) norm implies that there is a subse-
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for almost all � 2 S

n�1
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for some C

3

> 0 depending on the seminorms jj jj

�;0

, j�j � 2n. Lemma 5.14 therefore

tells us that
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Before using this result, note that by (5.108),
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so there is again a subsequence
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for almost all � 2 S
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Since �(0) was assumed to be 0,
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Combining estimates (5.121) and (5.123) yields
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Equations (5.118) and (5.124) together show that for almost all � 2 S
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This proves claim (c).

In view of (d), Lemma 5.15 asserts that
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which is �nite for any R > 0 by the assumption that j�j
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whenever � 2 S(�

?

) and �(0) = 0. We have already proved that almost all points

of S
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satisfy these conditions.
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Claim (d) will be proved once we succeed in showing that c = 0.
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it will su�ce to show that the second term on the right hand side approaches zero

as k !1. We shall do this with the help of Lemma 5.8(a) in �
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which can be seen as follows. Since
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by Lemma 5.15,
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for almost all � 2 S

n�1

.

All assumptions of Lemma 5.8(a) are therefore satis�ed, whence we see that

hu;P

�

e

�

i = hu; (P

�

e)

�

i

�!1

���! 0: (5.138)

This completes the proof.

The following theorem �nally gives the approximate parallel beam reconstruction

formula.

Theorem 5.17. Let n � 2 and e 2 D

xr

(R

n

) \ H

1=2

(R

n

) be such that j�j

�1

be(�) 2

L

1

loc

(R

n

). Then for almost all � 2 S

n�1

,

(a) P

�

e 2 L

1
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(�
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)

(b) with any coordinates on �

?

, D

j

(P

�

e) 2 L

2

(�

?

) and

F

�

D

j

(P

�

e)

�

(�) =

p

2� i �

j

be(�) (5.139)

for almost all � 2 �

?

(c) the function

�P

�

e = �

n�1

X

j=1

p: v:

@R

1

@x

j

�D

j

(P

�

e) ; (5.140)

where p: v:

@R

1

@x

j

� is the Riesz transform on �

?

�

=

R

n�1

, is in L

2

(�

?

) and

F(�P

�

e)(�) =

p

2� j�j be(�) (5.141)

almost everywhere

(d) if f 2 L

2

0

(R

n

), then for all x 2 R

n

e � f(x) =

Z

S

n�1

k � P

�

f(E

�

x) d�; (5.142)

where k =

b

n

2

�P

�

e.

Proof. Claim (a) follows immediately from Theorem 5.16(b). In view of claim (b),

Lemma 5.15 asserts that
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(5.143)

Therefore almost all � 2 S

n�1

satisfy
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2
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)

=

Z
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?
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2
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d� <1 (5.144)
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and the claims of Theorem 5.16. Fix such a �. By Theorem 5.16(d), F(P

�

e) =

p

2� be

almost everywhere on �

?

, and therefore F(D

j
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p
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j

be(�), which is in

L

2

(�

?

) because

jjD

j

(P

�

e)jj

L

2

(�

?

)

=

p

2� jj�

j

be(�)jj

L

2

(�

?

)

�

p

2� jjj�j be(�)jj

L

2

(�

?

)

<1: (5.145)

This proves (b).

Since D

j

(P

�

e) 2 L

2

(�

?

), Theorem 4.10 in �

?

�

=

R

n�1

shows that
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j
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and that
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�
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p
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(5.147)

as claimed in (c).

Claim (d) will be proved through a usual limit argument: we shall �rst derive the

result for test functions, and then show that when more general functions are ap-

proximated by test functions, the result holds at the limit also for the more general

functions.

Assume that � 2 L

2

0

(R

n

) and supp� � B(0; R); we shall soon apply the results that

we are going to derive, with � a function closely related to f . Then
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and applying the triangle inequality and Hölder's inequality to the inner integral

gives
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(5.149)

so that P

�

� 2 L

2

(�

?

). Also, suppP

�

� � B(0; R), since whenever y 2 �

?
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Choose a sequence of test functions �

k

2 D(R

n

), such that supp�

k

� B(0; R) and

jj�

k

� �jj

L

2

(R

n

)

! 0. Then

Z

�

?

�P

�

e(y)P

�

�

k

(y) dy = h�P

�

e;P

�

�

k

i

=




F�P

�

e;F

�1

F

�1

FP

�

�

k

�

:

(5.150)

Now note that by Lemma 5.14, FP

�

�

k

(�) =

p
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�
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(�) and by (A.59), F
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and consequently

Z

S

n�1

Z

�

?

�P

�

e(y)P

�

�

k

(y) dy d� = 2�

Z

S

n�1

Z

�

?

j�j be(�)

c

�

k

(��) d� d�: (5.152)
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(5.153)

The same holds at the limit for �, which can be seen as follows. By Hölder's inequality

and (5.149),
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Since
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this implies that
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If we now choose �(y) = f(x� y) with x 2 R

n

, we observe that using � = t� x � �,

d� = �dt,
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Therefore,
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(5.158)

as claimed.

5.3 Reconstruction Formulae

The di�erent reconstruction formulae can now be summarized as follows. The exact

reconstruction formula is an immediate consequence of Theorem 5.10:

Theorem 5.18. If n 2 Z

+

, f 2 D

xr

(R

n

) and j�j

�1

^

f(�) 2 L
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Proof. By Theorem 5.10,
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Therefore �(R
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� f) = f as distributions. Since f 2 D
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, this also implies

equality almost everywhere.

As � is a continuous operator from H

1
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2
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1
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explicitly involves the derivatives, and the Riesz transform p: v:

@R

1

@x

j

� is not a smooth-

ing operator. The exact reconstruction is, therefore, sensitive to noise in the mea-

surements.

The approximate reconstruction formula is obtained from Theorem 5.17:
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(5.162)

where A = S

n�1

(0; R).
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Proof. The �rst equality is Equation (5.142) of Theorem 5.17(d). To obtain the

second, make the substitution y = E

�

a, dy =

ja��j

R
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(5.163)

To justify changing the order of integration by Fubini's theorem, note that using

Hölder's inequality twice, �rst on the outer integral and then on the inner one, yields
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This can be seen to be �nite by analysing both inner integrals separately. Since
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Theorem 5.17(c) and Lemma 5.15 assert that
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If suppf � B(0;

~

R), then (5.149) tells that

Z

�

?

jP

�

f(y)j

2

dy = jjP

�

f jj

2

L

2

(�

?

)

� 2

~

R jjf jj

2

L

2

(R

n

)

=: C

2

: (5.167)

Consequently,
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The reconstruction formula for �e � f is obtained by replacing e by �e above:
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(5.169)
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for all x 2 R

n

. If, in addition, e has compact support, then

�(e � f) = e � �f: (5.170)

Proof. First observe that
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and that

Z

K

j�j

�1

jF�e(�)j d� =

Z

K

jbe(�)j d�

� jjbejj

L

2
jj�

K

jj

L

2

� jjejj

H

3=2

p

m(K) <1

(5.172)

whenever K is compact. Therefore Corollary 5.19 can be applied to �e:
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=
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Equations (5.171) and (5.172) show that D
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Using Fubini's theorem, partial integration and the fact that D
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and shows that P
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e, and substituting this into (5.173) proves the �rst part

of the claim. Since e, �e 2 L

2

� S

0

and f 2 L

2

0

� D

0

0

,

F

�

�(e � f)

�

(�) = j�j (2�)

n=2

be(�)

^

f(�) = F

�

(�e) � f)

�

(�): (5.180)

If e has bounded support, then e 2 D

0

0

and we can write

F

�

�(e � f)

�

(�) = F(e � �f)(�): (5.181)

5.4 Stability Results

In contrast with reconstructing f = �R

1

� f , which is sensitive to noise in the

measurements, reconstructing e � f is a stable operation. The following theorem

tells that the error in e � f is uniformly bounded by the L

2

norm of the error in the

measurements Df :

Theorem 5.21. If n � 2 and e 2 D

xr

(R

n

) \ H

1=2

(R

n

) is such that j�j

�1

be(�) 2

L

1

loc

(R

n

), then there exists a constant C > 0 such that

je � f(x)j � C jjDf jj

L

2

(S

n�1

(0;R)�S

n�1

)

(5.182)

for all f 2 L

2

0

(R

n

) with suppf � B(0; R) and all x 2 R

n

.

Proof. By Corollary 5.19, Young's inequality on �

?

and Hölder's inequality on S

n�1

,

je � f(x)j

2

�

b

2

n

4

�

Z

S

n�1

�

�

�P

�

e � P

�

f(E

�

x)

�

�

d�

�

2

�

b

2

n

4

�

Z

S

n�1

jj�P

�

ejj

L

2

(�

?

)

jjP

�

f jj

L

2

(�

?

)

d�

�

2

�

b

2

n

4

Z

S

n�1

jj�P

�

ejj

2

L

2

(�

?

)

d�

Z

S

n�1

jjP

�

f jj

2

L

2

(�

?

)

d�:

(5.183)

Theorem 5.17(c) asserts that

jj�P

�

ejj

2

L

2

(�

?

)

= 2� jjj�j be(�)jj

2

L

2

(�

?

)

= 2�

Z

�

?

j�j

2

jbe(�)j

2

d�; (5.184)

whence

Z

S

n�1

jj�P

�

ejj

2

L

2

(�

?

)

d� = 2�

Z

S

n�1

Z

�

?

j�j

2

jbe(�)j

2

d� d�

= 2� jS

n�2

j

Z

R

n

j�j jbe(�)j

2

d� = 2� jS

n�2

j jjejj

2

H

1=2

(5.185)
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by Lemma 5.15. Performing the already familiar change of coordinates y = E

�

a,

dy =

ja��j

R

da, where y runs twice over B(0; R) \ �

?

(containing suppP

�

f) as a runs

over the two hemispheres of A := S

n�1

(0; R) (see Figure 3.4), shows that the latter

integral in (5.183) is equal to

Z

S

n�1

Z

�

?

jP

�

f(y)j

2

dy d� =

1

2

Z

S

n�1

Z

A

jP

�

f(E

�

a)j

2

ja � �j

R

dad�

�

Z

S

n�1

Z

A

jD

a

f(�)j

2

da d� = jjDf jj

2

L

2

(A�S

n�1

)

:

(5.186)

This shows that the claim holds with C = b

n

p

�

2

jS

n�2

j jjejj

H

1=2

.

Almost the same derivation yields an analogous result for �e � f :

Theorem 5.22. If n � 2 and e 2 H

3=2

(R

n

) is such that �e 2 D

xr

(R

n

), then there

exists a constant C > 0 such that

j�e � f(x)j � C jjDf jj

L

2

(S

n�1

(0;R)�S

n�1

)

(5.187)

for all f 2 L

2

0

(R

n

) with suppf � B(0; R) and all x 2 R

n

.

Proof. As in the proof of Theorem 5.21,

je � f(x)j

2

�

b

2

n

4

Z

S

n�1

Z

�

?

j4P

�

e(y)j

2

dy d�

Z

S

n�1

Z

�

?

jP

�

f(y)j

2

dy d�: (5.188)

by Theorem 5.20, Young's inequality on �

?

and Hölder's inequality on S

n�1

. The

�rst part of Theorem 5.20 and Lemma 5.15 show that

Z

S

n�1

Z

�

?

j4P

�

e(y)j

2

dy d� = 2�

Z

S

n�1

Z

�

?

�

�

j�j

4

jbe(y)j

2

dy d� (5.189)

= 2� jS

n�2

j

Z

R

n

j�j

3

jbe(y)j

2

dy = 2� jS

n�2

jjjejj

H

3=2

;

so that the same change of variable as in the proof of Theorem 5.21 yields

je � f(x)j � b

n

r

� S

n�2

2

jjejj

H

3=2

jjDf jj

L

2

(S

n�1

(0;R)�S

n�1

)

; (5.190)

as claimed.



Chapter 6

Equivalence of Wave Fronts

6.1 Wave Front of a Distribution

If �f is to be reconstructed instead of the real x-ray attenuation density f , it is

important to know that these two functions yield similar information. Especially

the discontinuities in the density structure, indicating boundaries between di�erent

materials or di�erent types of tissues, are often of interest, and it fortunately turns

out that �f and f have exactly the same discontinuities. More precisely, they have

the same wave fronts, which are de�ned as follows: [Hör]

De�nition 6.1. Let X � R

n

be an open set and let f 2 S

0

(X) be a tempered

distribution. The point (x

0

; �

0

) 2 X � (R

n

n f0g) does not belong to the wave front

of f , if there exist an " > 0 and a function � 2 C

1

0

(R

n

) with �(x

0

) 6= 0, such that

for each N 2 Z

+

there is a constant c

N

for which

j(F(�f)) (�)j < c

N

(1 + j�j)

�N

(6.1)

whenever � is in the cone

K

"

(�

0

) :=

n

� 2 R

n

n f0g

�

�

�

�

�

�

j�j

�

�

0

j�

0

j

�

�

< "

o

: (6.2)

All other points (x

0

; �

0

) 2 X � (R

n

n f0g) are said to belong to the wave front of f ,

which is denoted by WF (f).

The projection fx

0

2 X j (x

0

; �

0

) 2 WF (f)g is called the singular support of f and

denoted by singsuppf .

The wave front set describes the singularities of f , because if f is smooth in some

neighbourhood U of a point x

0

2 X, then for any � 2 C

1

0

supported in U , �f is

in C

1

0

� S and therefore also F(�f) 2 S. Consequently, (1 + j�j)

N

F(�f)(�) is

bounded by some constant c

N

depending on the seminorms jjF(�f)jj

�;0

, j�j � N .

Also conversely, if (6.1) holds, then �f is smooth. Thus, the singular support of f

consists of the points x

0

2 X at which f is singular. For a �xed x

0

2 singsuppf ,

the set of points f�

0

2 R

n

n f0g j (x

0

; �

0

) 2WF (f)g tells in which directions f is not

smooth at x

0

. For details and proofs, see [Hör].
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We shall now show that under certain assumptions on f , the distributions �f and f

have the same wave fronts. This result holds under more general conditions, too, but

to avoid using results from the theory of pseudodi�erential operators, we shall con�ne

our study to square-integrable functions for which �f is in the x-ray domain D

xr

[RK]. Such functions are, of course, su�cient in practical tomography applications.

6.2 Auxiliary Results

A few lemmata will be needed for the proof.

First of all, the cuto� function � above can be chosen to be identically 1 in a neigh-

bourhood of x

0

:

Lemma 6.2. If n � 2, X � R

n

, f 2 S

0

(X) and (x

0

; �

0

) 62WF (f), then there exist

an open set U � X, a function � 2 C

1

0

and constants " > 0, c

1

; c

2

; c

3

; : : : such that

�j

U

= 1, x

0

2 U and

jF(�f)(�)j < c

N

(1 + j�j)

�N

whenever � 2 K

"

(�

0

) (6.3)

for all N 2 Z

+

.

Proof. Since (x

0

; �

0

) 2 WF (f), there is a function

~

 2 C

1

0

with

~

 (x

0

) 6= 0 and

constants " > 0 and ~c

N

, N 2 Z

+

, such that

�

�

F(

~

 f)(�)

�

�

< ~c

N

(1 + j�j)

�N

(6.4)

whenever � 2 K

"

(�

0

). Set

 (x) =

j

~

 (x

0

)j

~

 (x

0

)

~

 (x) (6.5)

so that a :=  (x

0

) = j

~

 (x

0

)j > 0. Since  is continuous, an open neighbourhood V

of x

0

can be chosen such that Re (x) >

a

2

whenever x 2 V . Choose "

1

; "

2

> 0 such

that B(x

0

; "

1

) � B(x

0

; "

2

) � V and a function � 2 C

1

0

with properties 0 � �(x) � 1

for all x 2 X, �j

B(x

0

;"

1

)

= 1 and �(x) = 0 when x 62 B(x

0

; "

2

); for instance the

function ~�

"

1

;"

2

in (A.34) will do.

Now set g(x) = �(x) (x)+(1��(x))a=4. This function is clearly smooth and it does

not vanish anywhere: When jx�x

0

j < "

1

, jg(x)j � Re (x) >

a

2

; when jx�x

0

j > "

2

,

jg(x)j =

a

4

> 0, and when "

1

� jx� x

0

j � "

2

,

jg(x)j � Re g(x) = �(x)Re (x) + (1� �(x))

a

4

�

a

4

> 0: (6.6)

We can therefore de�ne the function �(x) =  (x)=g(x) 2 C

1

0

(R

n

) with the property

�(x) = 1 whenever x 2 U := B(x

0

; "

1

).

For showing that � satis�es (6.3), �rst �x h 2 C

1

0

such that hj

supp 

= 1; once again,

~�

"

0

1

;"

0

2

can be used if "

0

1

is chosen so large that supp � B(0; "

0

1

) and "

0

2

> "

0

1

. Then

h =  and

F(�f) = F

�

 f

g

�

= F

�

h f

g

�

= F

�

h

g

�

� F( f): (6.7)
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Therefore,

jF(�f)(�)j �

Z

R

n

�

�

F

�

h

g

�

(�)

�

�

jF( f)(� � �)j d�: (6.8)

Using (6.4) and the fact that the constant j

~

 (x

0

)j=

~

 (x

0

) in (6.5) has modulus 1,

yields

jF(�f)(�)j � ~c

N

Z

R

n

�

�

F

�

h

g

�

(�)

�

�

(1 + j� � �j)

�N

d�: (6.9)

We then split the domain of integration into two parts, j�j �

1

2

j�j and j�j >

1

2

j�j,

and call the integrals over these two parts I

1

and I

2

, respectively. We estimate them

separately.

When j�j �

1

2

j�j, j� � �j � jj�j � j�jj �

1

2

j�j, and therefore

(1 + j� � �j)

�N

�

�

1 +

1

2

j�j

�

�N

�

�

1

2

+

1

2

j�j

�

�N

= 2

N

(1 + j�j)

�N

; (6.10)

which shows that

I

1

� ~c

N

Z

j�j�

1

2

j�j

�

�

F

�

h

g

�

(�)

�

�

2

N

(1 + j�j)

�N

d�

� 2

N

~c

N

�

�

�

�

F

�

h

g

�

�

�

�

�

L

1

(1 + j�j)

�N

:

(6.11)

For estimating I

2

, note that (1 + j� � �j)

�N

< 1, whence

I

2

�

Z

j�j>

1

2

j�j

(1 + j�j)

N

(1 + j�j)

�N

�

�

F

�

h

g

�

(�)

�

�

d�: (6.12)

Since in the domain of integration,

(1 + j�j)

�N

<

�

1 +

1

2

j�j

�

�N

<

�

1

2

+

1

2

j�j

�

�N

= 2

N

(1 + j�j)

�N

; (6.13)

we see that

I

2

� 2

N

~c

N

Z

j�j>

1

2

j�j

(1 + j�j)

N

�

�

F

�

h

g

�

(�)

�

�

d� (1 + j�j)

�N

� 2

N

~c

N

�

�

�

�

(1 + j�j)

N

F

�

h

g

�

(�)

�

�

�

�

L

1

(1 + j�j)

�N

:

(6.14)

Combining estimates (6.11) and (6.14) we see that (6.3) holds, if we choose

c

N

= 2

N

~c

N

�

�

�

�

�

F

�

h

g

�

�

�

�

�

L

1

+

�

�

�

�

(1 + j�j)

N

F

�

h

g

�

(�)

�

�

�

�

L

1

�

; (6.15)

which is certainly �nite, as F(h=g) 2 S(R

n

).

The geometry of two coaxial cones is described by

Lemma 6.3. If n � 2, �

0

2 R

n

n f0g and " 2 (0; 1=

p

2), then there is a constant

C > 0 such that

j� � �j � C j�j and j� � �j � C j�j (6.16)

whenever � 2 K

"=2

(�

0

) and � 2 R

n

nK

"

(�

0

).
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Proof. Because K

�

(�

0

) = K

�

(��

0

) for all � > 0, we can assume that j�

0

j = 1. Write

~

K := K

"

(�

0

) and

~

K

0

:= K

"=2

(�

0

). Consider the plane T � R

n

spanned by the origin,

� and � and call �

0

0

the orthogonal projection of �

0

onto T . The intersection of a

cone with a plane through its vertex is a sector of a circle, so the intersection of T

with the hull of

~

K consists of two rays from the origin. Let � be the point located

at distance 1 from the origin on the closer one to � of these two rays, and let �

0

be

the point with the same properties with respect to

~

K

0

. (See Figure 6.1.)

ξ

0ξ’

κ’~
K’

K
~

0

ζ

0

1

1 ε/2
ε

1

β

α

γ

κ

µ

T

Figure 6.1: Geometry for constructing the lower bound �

0

in the proof

of Lemma 6.3. Lines not in the plane T are drawn as dashed.

Write � = j�

0

0

j, � = ]�

0

0�, � = ]�

0

0

0�

0

and  = ]�

0

0

0� = �+ �, where

]x

1

x

2

x

3

= arccos

(x

1

� x

2

) � (x

3

� x

2

)

jx

1

� x

2

j jx

3

� x

2

j

2 [0; �] (6.17)

denotes the angle between the line segments from x

2

to x

1

and x

3

. As � moves in

R

n

n

~

K, � varies in (

p

1� "

2

=4; 1].

Applying the Pythagorean and cosine theorems for the triangles �

0

�

0

0

�

0

and �

0

0

0�

0

,

respectively, yields

"

2

4

� (1

2

� �

2

) = �

2

+ 1

2

� 2� cos �; (6.18)

and for �

0

�

0

0

� and �

0

0

0�, yields

"

2

� (1

2

� �

2

) = �

2

+ 1

2

� 2� cos ; (6.19)

and consequently

� =  � � = arccos

2� "

2

2�

� arccos

8� "

2

8�

: (6.20)
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A few calculations show that given " 2 (0; 1=

p

2), this is a decreasing function of

� 2 (

p

1� "

2

=4; 1] and has a lower bound �

0

> 0 such that

� � �

0

for all � 2 (

p

1� "

2

=4; 1]: (6.21)

Denote by �

0

the point which is further away from �

0

of the two points of T with the

properties j� � �

0

j = j� � �j and �

0

� �? �.

~
K

~
K’

ξ

’ζ

a’

0’

0

a

ξ

ζ

α

b

Figure 6.2: Geometry in the proof of the �rst part of Lemma 6.3.

Figure 6.2 depicts this situation and demonstrates that since � is clearly at most as

great as the aperture of K

"

(�

0

), which is less that �=2,

j� � �j

j�j

=

j� � �

0

j

j�j

�

j� � �

0

j

b

�

a

b

�

a

0

b

= sin� � sin�

0

=: C (6.22)

for all � 2

~

K

0

, � 2 R

n

n

~

K, proving the �rst claim.

For the second one, write � = ]�0� and distinguish two cases according to whether

� is greater or smaller than �=2.

If � < �=2, the situation is as in Figure 6.3, and we see that

j� � �j

j�j

�

~a

j�j

�

~

b

j�j

= sin(�+ �

1

) � sin� � sin�

0

: (6.23)

If then � � �=2, simply denote by �

0

the point on the line joining � and � that is

perpendicular to �. Figure 6.4 demonstrates that

j� � �j = j� � �

0

j+ j�

0

� �j � j� � �

0

j =

p

j�

0

j

2

+ j�j

2

� j�j � sin�

0

j�j: (6.24)

Combining estimates (6.23) and (6.24) shows that the second claim holds, too.
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Figure 6.3: Geometry in the proof of the second part of Lemma 6.3.
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Figure 6.4: Geometry in the proof of the second part of Lemma 6.3.
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Before proceeding to show that �f and f have the same wave fronts, we shall derive

the following result. It will be used for seeing that when f is decomposed as (1 �

�)f + �f , the former term does not produce singularities in �f or R

1

� f :

Lemma 6.4. Let n � 2, let U � R

n

be open and let �; � 2 C

1

0

(R

n

) be such that

supp � � U and �j

U

= 1. If f 2 D

xr

(R

n

) and R

1

� f 2 L

2

(R

n

), then

� R

1

�

�

(1� �)f

�

2 C

1

0

(R

n

); (6.25)

and if f 2 L

2

(R

n

) and �f 2 L

2

(R

n

), then

� �

�

(1� �)f

�

2 C

1

0

(R

n

): (6.26)

Proof. Since � has bounded support, so do the two functions in the claims. For

proving that

�(x)R

1

�

�

(1� �)f

�

(x) = b

n

�(x)

Z

R

n

1� �(y)

jx� yj

n�1

f(y) dy (6.27)

is smooth, note that in order for both 1� �(y) and �(x) to be non-zero,

jx� yj � dist (supp�; supp (1� �)) =: d

0

(6.28)

which is positive because supp (1� �) � R

n

n U and supp� � U are disjoint closed

sets (see Figure 6.5).

supp η supp 1 − φsupp 1 − φ

U

η

φ 1 − φ

Figure 6.5: The distance between the supports of � and 1�� in the proof

of Lemma 6.4 is positive.

The integrand in (6.27) is therefore nonsingular, and the Leibniz rule gives

@

�

�

�(x)R

1

�

�

(1� �)f

�

(x)

�

= b

n

X

���

c

��

@

���

�(x)

Z

R

n

nB(x

0

;d

0

)

@

�

x

1� �(y)

jx� yj

n�1

f(y) dy: (6.29)

Di�erentiation under the integral sign is permitted because, with h := (1��) f 2 L

2

,

@

k

Z

R

n

nB(x

0

;d

0

)

h(y)

jx� yj

n�1

dy

= lim

"!0

Z

R

n

nB(x

0

;d

0

)

h(y)

"

�

1

jx+ "e

k

� yj

n�1

�

1

jx� yj

n�1

�

dy

=

Z

R

n

nB(x

0

;d

0

)

@

k

h(y)

jx� yj

n�1

dy

(6.30)
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by Lebesgue's theorem of dominated convergence: When j"j � d

0

=2,

jx+ "e

k

� yj �

�

�

jx� yj � j"j

�

�

� d

0

�

d

0

2

=

d

0

2

> 0; (6.31)

and therefore jx� yj

1�n

is smooth, so that the mean value theorem yields

�

1

jx+ "e

k

� yj

n�1

�

1

jx� yj

n�1

�

=

@

@~x

k

1

j~x� yj

n�1

�

�

�

~x=x+�e

k

"

=

x

k

+ � � y

k

jx+ �e

k

� yj

n+1

"

(6.32)

for some � 2 R with j�j < j"j. The fact that j�j < j"j � d

0

=2 � jx� yj=2 also implies

that

jx+ �e

k

� yj �

�

�

jx� yj � j�j

�

�

� jx� yj �

jx� yj

2

=

jx� yj

2

; (6.33)

which yields

�

�

�

�

h(y)

"

�

1

jx+ "e

k

� yj

n�1

�

1

jx� yj

n�1

�

�

�

�

�

=

�

�

�

�

h(y)

"

x

k

+ � � y

k

jx+ �e

k

� yj

n+1

"

�

�

�

�

�

�

�

�

�

h(y)

jx+ �e

k

� yj

n

�

�

�

�

�

2

n

jh(y)j

jx� yj

n

=: g(y):

(6.34)

The dominant function g is integrable because

jjgjj

2

L

1

� 2

2n

jS

n�1

j

Z

1

d

0

r

�2n

r

n�1

dr jjhjj

2

L

2

<1: (6.35)

The same procedure also works inductively for higher-order derivatives, since

@

+e

k

Z

R

n

nB(x

0

;d

0

)

h(y)

jx� yj

n�1

dy

= lim

"!0

Z

R

n

nB(x

0

;d

0

)

[@



R

1

(x+ "e

k

� y)� @



R

1

(x� y)] dy (6.36)

and here the integral is dominated in absolute value by

�

�

�

�

h(y)

"

@

+"

k

R

1

(x� �e

k

� y) "

�

�

�

�

�

2

n+jj

jh(y)j

jx� yj

n+jj

2 L

1

; j�j < j"j �

d

0

2

: (6.37)

This shows that � R

1

�

�

(1� �)f

�

2 C

1

(R

n

).

Analogously for the second part of the claim,

@

�

�

�(x) �

�

(1� �)f

�

(x)

�

= @

�

�

� �(x)

n

X

j=1

p: v:

@R

1

@x

j

�D

j

�

(1� �)f

�

(x)

�

(6.38)

= �

X

���

c

��

@

���

�(x)

n

X

j=1

Z

R

n

nB(x

0

;d

0

)

@

e

j

+�

x

R

1

(x� y)D

j

�

(1� �)f

�

(y) dy:
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This time the induction step is

@

+e

k

Z

R

n

nB(x

0

;d

0

)

@R

1

@x

j

(x� y)D

j

h(y) dy

= lim

"!0

Z
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n
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0
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0

)

D

j
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"

h

@

e

j

+�

R

1
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k

� y)� @

e

j
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R

1

(x� y)

i

dy: (6.39)

Now the integrand is dominated in absolute value by

�

�

�

�

D

j

h(y)

"

@

e

j

+�+e

k

R

1

(x+ �e

k

� y) "

�

�

�

�

�

jD

j

h(y)j
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k

� yj

n�1+1+j�j+1

�

2

n+j�j+1

jD

j

h(y)j

jx� yj

n+j�j+1

=: g(y);

(6.40)

which is integrable since

jjgjj

2

L

1

� 2

2n+2j�j+2

jS

n�1

j

Z

1

d

0

r

�2n�2j�j�2

r

n�1

dr jjD

j
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2

L

2

(6.41)

and

jjD

j

hjj

L

2
= jj(D

j

�)f + (1� �)D

j

f jj

L

2
� jjD

j

�jj

L

1

jjf jj

L

2
+ jj1� �jj

L

1

jjD

j

f jj

L

2
(6.42)

is �nite because f 2 L

2

and jjD

j

f jj

L

2 = jji�

j

^

f jj

L

2 � jjj�j

^

f jj

L

2 = jj�f jj

L

2 <1.

6.3 �f and f Have Equal Wave Fronts

We are now ready to present the main result of this chapter:

Theorem 6.5. If n � 2, f 2 L

2

(R

n

) and �f 2 D

xr

(R

n

), then WF (f) =WF (�f).

Proof. First for showing the inclusion WF (�f) �WF (f), choose (x

0

; �

0

) 62WF (f)

and show that (x

0

; �

0

) 62 WF (�f). The converse inclusion will be shown later. Fix

U , �, ", c

1

, c

2

, c

3

, : : : according to Lemma 6.2. Assume that " < 1=

p

2, because if

the condition (6.3) holds for an " � 1=

p

2, it holds for a smaller one as well.

Select a function � 2 C

1

0

(R

n

) such that supp� � U . We shall prove that there are

constants "

0

> 0, c

0

1

; c

0

2

; c

0

3

; : : : such that

jF(��f)(�)j < c

0

N

(1 + j�j)

�N

(6.43)

for all N 2 Z

+

, whenever � 2 K

"

0

(�

0

). To this end, write �f = �(�f)+� ((1� �)f).

By Lemma 6.4, �� ((1� �)f) 2 C

1

0

, which implies that F (�� ((1� �)f)) 2 S.

Therefore, (1 + j�j)

N

F(��((1 � �)f)) is bounded for all N 2 Z

+

.

It is therefore su�cient to �nd constants "

0

> 0; c

0

1

; c

0

2

; c

0

3

: : : such that

jF(��(�f))(�)j < c

0

N

(1 + j�j)

�N

(6.44)

for all N 2 Z

+

and � 2 K

"

0

(�

0

). In fact, because 1+ j�j

N

>

1

2

(1+ j�j)

N

for large j�j,

say for j�j > R

0

, and because

d

N

= max

j�j�R

0

(1 + j�j)

N

1 + j�j

N

<1; (6.45)
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we see that always

�

1 + j�j

N

�

�1

� maxfd

N

; 2g (1 + j�j)

�N

: (6.46)

Hence it su�ces to �nd constants c

0

N

such that

jF(��(�f))(�)j < c

0

N

�

1 + j�j

N

�

�1

(6.47)

whenever � 2 K

"

0

(�

0

) for some "

0

> 0, or equivalently to show that for each N ,

�

1 + j�j

N

�

jF(��(�f))(�)j (6.48)

is bounded as � moves in K

"

0

(�

0

). This is what will be done next, with "

0

= "=2.

Choose N 2 Z

+

arbitrarily and examine the expression

F(��(�f))(�) = F� � F(�(�f))(�) =

Z

R

n

b�(� � �) j�j F(�f)(�) d�: (6.49)

Split the domain of integration into two parts, the cone

~

K := K

"

(�

0

), and its com-

plement. Using the triangle inequality, we obtain

�

1 + j�j

N

�
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1

(�) + I

2

(�); (6.50)

where
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~
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and
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N

�

Z
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n

n

~

K

jb�(� � �)j j�j jF(�f)(�)j d�: (6.52)

We shall show that both I

1

(�) and I

2

(�) are bounded.

For estimating I

1

, note that since b� 2 S(R

n

),

b�(� � �) � C

1
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N

)

�1

(6.53)

for some C
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> 0, and that by the choice of �,
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To see that this is bounded, observe that
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(6.56)
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which shows that
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The integrand is majorized on [0; 1] by 2

N

1

n

=(1 + 0
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) = 2

N

and on [1;1) by

(2r)

N
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=r
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r
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, both of which are integrable over the respective intervals.

Therefore I
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(�) is bounded.
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2

, use the fact that as b� 2 S,
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for some C
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> 0. Also,
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so that
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Analyse each factor of

(1 + j� � �j)

�N�n�2

= (1 + j� � �j)

�1

(1 + j� � �j)

�N

(1 + j� � �j)

�n�1

(6.61)

separately. First of all, the second claim of Lemma 6.3 asserts that
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which cancels out the factor j�j in (6.60). By the �rst claim of Lemma 6.3, the second
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cancels out the factor 1 + j�j
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showing the required speed of decrease. The third
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(6.65)

This completes the proof that WF (�f) �WF (f).
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For the converse inclusion, choose (x

0

; �

0

) 62 WF (�f) and show that (x

0

; �

0

) 62

WF (f). Write  = �f 2 D
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and consequently
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by Theorem 5.10. Choose U � R

n

, � 2 C

1

0

, " 2 (0; 1=

p

2) and constants c

1

, c

2

, : : : ,

according to Lemma 6.2, as before, but now with f replaced by  . Then choose any
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1

0
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0

1
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for all N 2 Z

+

and � 2 K
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). As before, it su�ces to show this for �R
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and �R
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and split the range of integration into two parts,
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estimating the integral over
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In the integral over R

n

n

~

K, use the fact that b� 2 S together with Lemma 6.3 to see

that
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whenever � 2 K

"=2

(�

0

). This estimate and the analogue of (6.59) yield
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(6.74)

Combining estimates (6.72) and (6.74) with (6.71) shows that (x

0

; �

0

) 62WF (f).



Chapter 7

Further Properties of �f and

Conclusions

Even thoughWF (f) =WF (�f), jumps of �f might of course be much smaller than

those of f . In this case, discontinuities of f would perhaps not be visible in e � �f .

Fortunately, discontinuities are clearly visible, as the following results show.

Because at least for f 2 S

F(�

2

f) = j�j

2

^

f = �

n

X

j=1

(i �

j

)

2

^

f = F(�4f); (7.1)

the operator � is sometimes called the square root of the negative Laplacian,

�� =

p

�4�. By emphasizing edges, it indeed behaves like a �rst order di�eren-

tial operator. Tomography objects are often made up of areas of constant density,

which makes detecting their edges an important objective in many applications.

Because a typical x-ray attenuation coe�cient function f can be thought of as a

linear combination of characteristic functions,

f =

n

X

j=1

c

j

�

X

j

; (7.2)

and because only linear operations on f are considered, studying ��

X

gives some

insight into the behaviour of �. It turns out that if X is su�ciently regular, then

��

X

behaves like �1=dist(x; @X) near the edges of X, being positive inside X and

negative outside, and is cupped inside X; see Figure 7.1(a). [FRS]

These features of �f cause small details of low contrast to be highlighted. This is

often useful to some extent, but it would normally be expedient to be able to alleviate

the cup e�ect. A heuristic method has been proposed for this purpose: adding to �f

a multiple of R

1

� �

X

, which can also be computed locally as is evident from (3.8).

It turns out that R

1

� �

X

is continuous everywhere and analytic in R

n

n @X, and

that it behaves like C + dist(x; @X) inside X and like (C + dist(x; @X))

1�n

outside

X; see Figure 7.1(b). This linear combination Lf := �(�f + �R

1

� f), where � and

� are constants, is not an approximation of f , but its qualitative behaviour is quite

similar, and this reconstruction has proved to be useful in practice. See Figure 7.1(c).

[FRS, FRSex, FFRS]
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Figure 7.1: Graph of �

X

(dotted line) and approximate graphs of (a)

��

X

, (b) R

1

� �

X

and (c) L�

X

= �(��

X

+ �R

1

� �

X

) (solid line) for

X = B

2

� R

2

; section along a straight line through the origin.
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The value of � that yields the most informative images must be determined empir-

ically for each picture. The graph of ��

X

is on average steeper for smaller sets X,

which implies a stronger need for cup correction. Therefore � should be large if the

principal interest is in small details, and small if Lf is to be nearly �at in large areas

of constant density. A rule of thumb of � = cr

�2

0

, where c � 6 is an experimental

constant, has been devised for making L�

B(0;r

0

)

nearly constant in most of B(0; r

0

).

[FFRS]

Although the di�erence in sign of ��

X

inside and outside X permits qualitative

inference of discontinuities in the x-ray attenuation density, quantitative estimates

for the sizes of the jumps in f cannot be directly made from the jumps in �f .

Procedures for calculating the jumps in f have, however, been developed. They �rst

require dividing the object into subsets X

j

in which f is assumed to be constant.

[FFRS, KR1]

Observe that the reconstruction of �f (or �e � f) is called local because the convo-

lution kernel 4P

�

e in the reconstruction formula (5.169) is compactly supported, so

that the computation of �f(x) only requires measurements of the attenuation along

lines passing close to x. On the other hand, the result is global in the sense that

the value of f at a point x a�ects �f everywhere since � is a non-local operator,

as mentioned in Section 3.6. In the reconstruction of f (or e � f) the situation is

reversed. The kernel �P

�

e is not compactly supported, whence the reconstruction of

f is global, using attenuation measurements along all lines going through the object,

but the result is local : changing the value of f at a point x does not change the

reconstructed value at other points, except through the convolution with the point

spread function e.

This local-global duality is re�ected in the fact that ��

X

does not vanish completely

outside X. In particular, the high contrast details show in other parts of the locally

reconstructed image. Methods for reducing this e�ect have been developed. [FFRS]

Several extensions to the concept of local tomography have also been proposed.

Pseudolocal tomography, for instance, expresses the reconstructed function as f =

f

d

+ f

c

d

, where f

c

d

is smooth. The points of discontinuity and jumps in f

d

and its

derivatives are exactly the same as those in f and its derivatives. The reconstruction

of f

d

can be done using measurements from only a small neighbourhood of the region

of interest. [KR2, RK]

Other generalisations include considering di�erent pseudodi�erential operators B of

f than just �f . Under certain assumptions, B preserves the singularities of f as was

shown in Section 6.3 for �. [KLM, RK]

The theory can also be extended to the attenuated Radon transform, which appears

in the context of nuclear emission tomography. Incomplete data problems, where

measurements can only be made from a limited angle, are also of both theoretical

and practical interest. [KLM, Nat, RK]

Any of these questions would make interesting subjects for further study.



Appendix A

Mathematical Tools

A.1 Spaces of Functions and Distributions

A.1.1 L

p

Spaces

We state below some of the most often used features of L

p

spaces. For an introduction

to the theory of L

p

spaces, see [Ru2]. We shall give proofs or references to them only

for those claims that cannot be found in it.

In what follows, we shall denote the space L

p

(X), where 1 � p � 1 and X is a

measure space, simply by L

p

. In this work, X is always R

n

or a measurable subset

of it, equipped with the Lebesgue measure.

For all 1 � p � 1, the spaces L

p

are complete normed spaces, i.e. Banach spaces,

with norm jj � jj

L

p

.

Convergence in L

p

(jjf

k

� f jj

L

p

! 0) and pointwise convergence (f

k

(x) ! f(x))

do not imply each other, but the following is true: If a sequence of functions (f

k

)

converges to f in L

p

, it has a subsequence that converges to f almost everywhere.

If 1 � p; p

0

� 1 are such that

1

p

+

1

p

0

= 1; (A.1)

then p and p

0

are called conjugate exponents; here 1=1 = 0. The notation p

0

is often

used without separate mention for the conjugate exponent of p. The spaces L

p

and

L

p

0

are closely related, as the following results show.

Theorem A.1 (Hölder's inequality). Let p and p

0

be conjugate exponents. Then

jjfgjj

L

1
� jjf jj

L

p

jjgjj

L

p

0

: (A.2)

Corollary A.2. Let 0 � p

1

; p

2

; : : : ; p

n

� 1 be such that

1

p

1

+

1

p

2

+ � � � +

1

p

n

= 1: (A.3)

Then

jjf

1

f

2

� � � f

n

jj

L

1
� jjf

1

jj

L

p

1

jjf

2

jj

L

p

2

� � � jjf

n

jj

L

p

n

: (A.4)
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Proof. We proceed by induction. For n = 1, the claim is trivial. Assume that the

claim holds for n = k. Writing

1

p

=

1

p

1

+

1

p

2

+ � � �+

1

p

k

so that

1

p

+

1

p

k+1

= 1, Hölder's

inequality gives us

jjf

1

� � � f

k

f

k+1

jj

L

1
�

�

Z

jf

1

� � � f

k

j

p

dx

�

1=p

jjf

k+1

jj

L

p

k+1

=

�

jjf

p

1

� � � f

p

k

jj

L

1

�

1=p

jjf

k+1

jj

L

p

k+1

:

(A.5)

Now, since

1

p

1

=p

+

1

p

2

=p

+ � � �+

1

p

k

=p

= 1, we can use our assumption:

jjf

p

1

� � � f

p

k

jj

L

1
�

�

Z

jf

p

1

j

p

1

=p

dx

�

p=p

1

� � �

�

Z

jf

p

k

j

p

k

=p

dx

�

p=p

k

= jjf

1

jj

p

L

p

1

� � � jjf

k

jj

p

L

p

k

;

(A.6)

and hence

jjf

1

� � � f

k

f

k+1

jj

L

1
� jjf

1

jj

L

p

1

� � � jjf

k

jj

L

p

k

jjf

k+1

jj

L

p

k+1

: (A.7)

Thus, the claim holds equally well for n = k + 1.

If 1 � p < 1 and p and q are conjugate exponents, then L

q

is isometrically iso-

morphic to the dual space of L

p

. This means that each bounded linear functional

� : L

p

! C can be represented by a unique g 2 L

q

in the sense that for all f 2 L

p

,

�(f) =

Z

f(x) g(x) dx: (A.8)

This also implies

Theorem A.3 (Converse of Hölder's inequality). Let p and p

0

be conjugate ex-

ponents, 1 � p <1. Then

jjf jj

L

p

= sup

jjgjj

L

p

0

�1

�

�

�

Z

f(x) g(x) dx

�

�

�

: (A.9)

We shall often need to change orders of integration, which is justi�ed by

Theorem A.4 (Fubini). Let either

(a) f : X

1

�X

2

! [0;1], or

(b) f : X

1

�X

2

! C and f 2 L

1

(X

1

�X

2

).

Then

Z

X

1

�

Z

X

2

f(x; y) dy

�

dx =

Z

X

2

�

Z

X

1

f(x; y) dx

�

dy: (A.10)

The convolution of two su�ciently well-behaved functions f and g is the function

(f � g)(x) =

Z

f(x� y)g(y) dy: (A.11)
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Convolution has many useful properties, being for instance commutative (f � g =

g � f), associative (f � (g � h) = (f � g) � h), and linear (f � (g + h) = f � g + f � h).

Also,

@

@x

j

(f � g) =

@f

@x

j

� g = f �

@g

@x

j

; (A.12)

when f and g are su�ciently smooth (see Section A.1.3). Continuity is asserted by

Theorem A.5 (Young's inequality). Let p, q and r be such that 1 � p; q; r � 1

and

1

p

+

1

q

�

1

r

= 1. Then

jjf � gjj

L

r

� jjf jj

L

p

jjgjj

L

q

: (A.13)

Proof. Since

jf � g(x)j =

�

�

�

Z

f(x� y)g(y) dy

�

�

�

�

Z

jf(x� y)jjg(y)j dy = jf j � jgj(x); (A.14)

assume that f and g are real-valued and nonnegative; if they are not, set

~

f = jf j,

~g = jgj and drop the tildes. Thus also (f � g)(x) � 0 and jf � gj = f � g. Let

1 � �; � � 1 be such that

1

�

=

1

p

�

1

r

;

1

�

=

1

q

�

1

r

; (A.15)

so that

1

r

+

1

�

+

1

�

=

1

p

+

1

q

�

1

r

= 1. Thus, using the Corollary A.2 of Hölder's

inequality, we have

(f � g)(x) =

Z

f(y)

p(

1

p

�

1

�

)

g(x � y)

q(

1

q

�

1

�

)

f(y)

p=�

g(x� y)

q=�

dy

�

�

Z

f(y)

rp(

1

p

�

1

�

)

g(x� y)

rq(

1

q

�

1

�

)

dy

�

1

r

�

�

�

Z

f(y)

p

dy

�

1

�

�

Z

g(x� y)

q

dy

�

1

�

: (A.16)

Since

1

p

�

1

�

=

1

q

�

1

�

=

1

r

; (A.17)

this simpli�es to

(f � g)(x) � jjf jj

p=�

L

p

jjgjj

q=�

L

q

�

Z

f(y)

p

g(x � y)

q

dy

�

1

r

(A.18)

yielding

jjf � gjj

r

L

r

=

Z

j(f � g)(x)j

r

dx

� jjf jj

pr=�

L

p

jjgjj

qr=�

L

q

Z Z

f(y)

p

g(x � y)

q

dy dx

= jjf jj

pr=�

L

p

jjgjj

qr=�

L

q

Z

f(y)

p

Z

g(x� y)

q

dx dy

= jjf jj

pr=�

L

p

jjgjj

qr=�

L

q

jjf jj

p

L

p

jjgjj

q

L

q

(A.19)
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where reversing the order of integration is justi�ed by Fubini's theorem (Theo-

rem A.4) since f

p

and g

q

are nonnegative. Thus, noting that

1

�

+

1

r

=

1

p

and

1

�

+

1

r

=

1

q

; (A.20)

we get

jjf � gjj

L

r

� jjf jj

p

�

+

p

r

L

p

jjgjj

q

�

+

q

r

L

q

= jjf jj

L

p

jjgjj

L

q

: (A.21)

In general, L

p

functions are of course not continuous. Since jjf � gjj

L

p

= 0 if f and

g disagree on a set of measure zero, one cannot even speak of point values of an

L

p

function. Instead, elements of L

p

must be interpreted as equivalence classes of

functions agreeing almost everywhere.

Continuous, and what is more, smooth functions are, however, dense in L

p

for 1 �

p < 1: If the non-negative functions �

j

2 C

k

(R

n

), j 2 N [ f1g, are such that

jj�

j

jj

L

1
= 1 for all j and

Z

jxj��

�

j

(x) dx! 0 as j !1; (A.22)

then the sequence of functions �

j

� f converges to f in the L

p

norm;

1

the fact that

they are in L

p

is clear from Young's inequality above. The functions �

j

� f are in

C

k

because @

�

(�

j

� f) = (@

�

�

j

) � f .

The kernels �

j

, called molli�ers, can be chosen to be, for instance, the functions e

1=j

introduced below in (A.48) as approximations of the delta distribution. In that case,

e

1=j

� f 2 C

1

.

Of the L

2

spaces, L

2

plays a special role. As p = 2 is its own conjugate exponent,

L

2

can be thought of as its own dual space; this is expressed by saying that L

2

is

re�exive. Since L

2

is also separable, which is to say that it has a dense countable

subset, the Banach-Alaoglu theorem can be applied:

Theorem A.6 (Banach-Alaoglu). The closed unit ball in a separable re�exive Ba-

nach space B is weakly sequentially compact. That is, every bounded sequence (x

j

)

j2N

in B has a weakly convergent subsequence (x

j

k

)

k2N

whose weak limit x satis�es

jjxjj � sup

j2N

jjx

j

jj: (A.24)

Proof. See [HP, Theorem 6.3.7] or [Ru3, Theorem 3.15].

1

Reference [Ru2, Theorem 9.10] covers this with the particular choice of

�

j

(x) =

r

2

�

j

1 + j

2

x

2

: (A.23)

The more general form can be found in [HS, Theorem 21.37].
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Another remarkable property of L

2

is that for p = 2, the duality in (A.8) de�nes an

inner product through

(f; g) =

Z

f(x) g(x) dx; (A.25)

This makes L

2

into a Hilbert space, i.e., a Banach space whose norm is induced from

the inner product:

jjf jj

L

2
=

p

(f; f): (A.26)

A.1.2 Principal Value Integrals

If f = u

+

�u

�

+ i(v

+

� v

�

), where u

+

, u

�

, v

+

and v

�

are nonnegative, measurable

functions, the Lebesgue integral of f is de�ned to be

Z

E

f dx =

Z

E

u

+

dx�

Z

E

u

�

dx+ i

Z

E

v

+

dx� i

Z

E

v

�

dx; (A.27)

whenever all terms on the right hand side are �nite. If they are not, and this is

caused by a singularity at one point, say the origin, it may happen that the positive

and negative parts of the function cancel out if the singularity is approached at an

equal speed from all directions, i.e. the limit

p: v:

Z

f(x) dx = lim

"!0

+

Z

EnB(0;")

f(x) dx (A.28)

may be �nite. In this case, we call this limit the Cauchy principal value of the

integral.

Convolution being an integral, too, we de�ne the Cauchy principal value convolution

of f and g as

p: v: f � g(x) = p: v:

Z

f(y)g(x� y) dy: (A.29)

Note that the de�nition is not symmetric with respect to f and g.

The letters p: v: are also sometimes used as part of the name of a distribution; this

is the case when the principal value integral de�nes a distribution through

hp: v: f; �i = p: v:

Z

f(x)�(x) dx: (A.30)

One such situation is given by Theorem 4.8. Distributions are introduced in the

following section.

A.1.3 Distributions

For an open set X � R

n

, we shall call D(X) the space C

1

0

(X) with a topology such

that a sequence (�

k

) converges to� in D(X), if

1. there exists a �xed compact set K � X such that supp�

k

� K for all k 2 N

2. for all m 2 N, sup

�

j@

�

�

k

(x)� @

�

�(x)j

�

�

j�j � m; x 2 K

	

k!1

���! 0.
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Distributions are de�ned as generalisations of functions in the following way. For

�;  2 D(X), the bilinear pairing

h ; �i =

Z

X

 (x)�(x) dx (A.31)

makes h ; �i: D(X) ! C a continuous linear functional, as the integral is absolutely

convergent. More generally, we shall call distributions on X the continuous linear

functionals on D(X), and denote by D

0

(X) their complex vector space. The value

of a distribution f at � 2 D(X) can be written

f(�) = hf; �i: (A.32)

The latter form is normally used. Convergence in D

0

(X) is de�ned as follows: f

k

! f

if hf

k

; �i ! hf; �i for all � 2 D(X). For these reasons, the elements of D(X) are

called test functions.

According to Equation (A.31), every test function  2 D(X) can also be considered

a distribution. In the sequel, we shall often make no distinction between a test

function and the corresponding distribution, and we shall even write

2

D(X) � D

0

(X): (A.33)

Consequently, when we extend operations on functions to operations on distributions,

we shall have to make sure that when restricted to D(X), they agree with the familiar

de�nitions.

Figure A.1 shows some inclusion relations between spaces of functions and distribu-

tions used in this work.

A particularly useful class of test functions are the approximate characteristic func-

tions of balls B(0; "

1

), that is, functions that assume the value 1 in B(0; "

1

) and the

value 0 outside larger balls B(0; "

2

). Such functions are given, for instance, by the

formula

~�

"

1

;"

2

(x) =

8

>

>

<

>

>

:

1; jxj � "

1

exp

�

1

("

2

�"

1

)

2

+

1

(jxj�"

1

)

2

�("

2

�"

1

)

2

�

; "

1

� jxj � "

2

0; jxj � "

2

:

(A.34)

(See Figure A.2.)

The Schwartz space of rapidly decreasing functions is the set

S(X) =

�

� 2 C

1

(X)

�

�

jj�jj

�;�

<1 8�; � 2 N

n

	

; (A.35)

where the numbers

jj�jj

�;�

= sup

x2X

jx

�

@

�

�(x)j (A.36)

are seminorms de�ning the topology of S. The space S(X) is metrisable, but for our

purposes, it su�ces to know that �

k

! � in S if and only if jj�

k

� �jj

�;�

! 0 for all

�; � 2 N

n

.

2

In fact, this should be interpreted as � : D(X)! D

0

(X), where h� ; �i =

R

X

 (x)�(x)dx. The

inclusions in Figure A.1 should be understood similarly.
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Figure A.1: Inclusion relations between various function spaces.
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with n = 2, "

1

= 0:3; "

2

= 1:4.
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A simple consequence of the �niteness of the seminorms jj�jj

�;�

is that p(x; jxj)�(x) is

bounded and integrable for all polynomials p of the n+ 1 variables x

1

; : : : ; x

n

; jxj.

Analogously to D

0

(X), we de�ne S

0

(X), the space of tempered distributions on X,

to be the set of continuous linear functionals on S(X). As before in (A.32), the

notation hf; �i will be used for the value that a tempered distribution f assumes at

� 2 S(X). An equivalent de�nition for S

0

is

S

0

(X) =

�

f : S(X) ! C

�

�

9C � 0; N 2 N : jhf; �ij � C

X

j�j�N

j�j�N

jj�jj

�;�

8� 2 S

	

:

(A.37)

A sequence (f

k

) in S

0

(X) converges to f if hf

k

; �i ! hf; �i for all � 2 S(X). This

weak topology of S

0

(X) is not metrisable. As arguments of tempered distributions,

rapidly decreasing functions are also called test functions.

Again, S(X) can be considered a subset of S

0

(X) if we are careful with extending

operations on rapidly decreasing functions to operations on tempered distributions.

The fact that this inclusion is dense is remarkable, because it allows us to extend

many operators L : S(X)! S(X) to

~

L : S

0

(X) ! S

0

(X) in a sequentially continuous

way, i.e., in such a way that if  

k

! f 2 S

0

(X) with  

k

2 S(X), then

hL 

k

; �i

k!1

���! h

~

Lf; �i (A.38)

for all � 2 S(X). De�nitions of sequentially continuous extensions include multipli-

cation by a function M 2 C

1

whose all derivatives are dominated in absolute value

by a polynomial,

hMf; �i = hf;M�i; (A.39)

and di�erentiation: The distribution derivative or weak derivative D

�

is de�ned by

hD

�

f; �i = hf; (�@)

�

�i; (A.40)

whose consistency can be seen by partial integration. For �rst order distribution

derivatives, the notation D

j

:= D

e

j

is also used.

The dilation operator �

�

, � > 0, is de�ned for a function � 2 S by �

�

�(x) = �(�x).

For f 2 S

0

, we set

h�

�

f; �i = �

�n

hf; �

1=�

�i: (A.41)

This, too, is a natural extension to the de�nition above, because for  2 S, the

change of variable y = x=�, dy = �

�n

dx yields

�

�n

h ; �

1=�

�i =

Z

 (x)�(

x

�

)�

�n

dx =

Z

 (�y)�(y) dy = h�

�

 ; yi: (A.42)

The support of a function f de�ned on X is the set

suppf = fx 2 X j f(x) 6= 0g; (A.43)
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A denotes the closure of a set A, i.e., the smallest closed set containing A.

A distribution f 2 D

0

(X) is said to vanish on a set U � X, if hf; �i = 0 for all �

with supp� � U . The support of a distribution f 2 D

0

(X) is de�ned as the set of

points that do not have a neighbourhood on which f vanishes.

The space of distributions with compact support is denoted by E

0

(X) = D

0

0

(X).

These distributions can be extended to linear functionals on C

1

(X) =: E , since for

f 2 D

0

0

with supp f � B(0; R) and � 2 C

1

,

hf; �i = hf; ~�

R;R+1

�i (A.44)

is �nite as ~�

R;R+1

� 2 C

1

0

. The same topology is used as for D

0

(X).

Convolutions f � g can be de�ned for f 2 D

0

(X) and g 2 D(X) by

hf � g; �i = hf; �g � �i; (A.45)

where �g denotes the re�ection of g, �g(x) = g(�x). This is the natural extension

from the case where f 2 L

1

loc

. The same formula can then be used to extend the

de�nition to cases where g 2 D

0

0

(X). Most properties of the convolution, including

commutativity, linearity, the Convolution theorem (A.60) and Formula (A.12) for

the derivatives, remain valid after this extension.

Inclusion relations between these function and distribution spaces are shown in Fig-

ure A.1. An inclusion A � B is denoted by A! B. All inclusions are proper.

An example of a distribution which is not a conventional function is Dirac's delta

distribution �, de�ned by

h�; �i = �(0): (A.46)

Clearly, there is no function e : X ! C such that

Z

X

e(y)�(y) dy = �(0); (A.47)

for all � 2 D, but as D is dense in S

0

, � can be seen as the limit of a sequence of

functions having higher and higher, narrower and narrower peaks around the origin.

For instance, if we de�ne

e

"

(x) = "

�n

e

1

(x="); where e

1

(x) = ~�

0;1

(x) =

(

Ce

1

jxj

2

�1

; jxj < 1

0; jxj � 1

(A.48)

and choose C in such a way that

R

e

1

(x) dx = 1, we have e

"

2 S for all " � 0 and

� = lim

"!0

e

"

: (A.49)

Such a function e

"

is often called an approximate delta function, blurring kernel or

point spread function.

The derivatives of the delta distribution give the values of the corresponding deriva-

tives of the test function at the origin,

hD

�

�; �i = (�1)

j�j

h�; @

�

�i = (�1)

j�j

@

�

�(0): (A.50)
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The support of the delta distribution and its derivatives consists of the single point

0. In fact, �nite linear combinations of � and its derivatives are the only functions

with point support: if suppf = f0g, then f =

P

j�j�m

c

�

D

�

� for some constants m

and c

�

.

For an introduction to the theory distributions, see references [Bre, Fri, Hör, Ner,

Rau].

3

A.1.4 Fourier Transform

Various di�erent de�nitions are commonly used for the Fourier transform Ff =

^

f

of a function f : R

n

! C in an appropriate class, for instance, f 2 S. We shall use

the following one:

Ff(�) =

^

f(�) = (2�)

�n=2

Z

R

n

f(x) e

�ix��

dx: (A.51)

The inverse Fourier transform is then given by

f(x) = F

�1

^

f(x) = (2�)

�n=2

Z

R

n

^

f(�) e

ix��

d�: (A.52)

The Fourier transform can be considered as a linear operator between various func-

tion spaces. Linearity is of major signi�cance, as many operations considered in this

work are linear.

The Fourier transform F : S ! S is a continuous linear bijection. Also,

j

^

f(�)j � (2�)

�n=2

Z

jf(x)j je

�ix��

j dx = (2�)

�n=2

jjf jj

L

1 ; (A.53)

whence jj

^

f jj

L

1

� (2�)

�n=2

jjf jj

L

1 , so that the Fourier transform can be extended to a

continuous linear injection from L

1

to L

1

, using the same Formula (A.51).

The Fourier transform F : S ! S can also be extended to a bijection F : L

2

! L

2

as the limit of the truncated Fourier transform:

Ff(�) =

^

f(�) = L

2

-lim

R!1

(2�)

�n=2

Z

jxj�R

f(x) e

�ix��

dx: (A.54)

The inverse transform is then

f(x) = L

2

-lim

R!1

(2�)

�n=2

Z

jxj�R

^

f(�) e

ix��

d�: (A.55)

3

[Bre] includes a gentle, intuitive prologue. [Fri] provides a good treatment of the basic theory.

An exhaustive account of the theory can be found in [Hör].

Reference [Ner] also gives a short introduction to the theory of distributions. Like some other

texts, it de�nes distributions as the continuous conjugate linear functionals on D, which has the

advantage that hf; �i = (f; �) for f 2 L

2

, � 2 S, but this changes somewhat most formulae.

Qualitatively, however, the results remain obviously the same, because each test function is, in fact,

only exchanged with its complex conjugate.

[Rau] deals with D

0

only brie�y in an appendix, but considers more thoroughly tempered distri-

butions, their Fourier transforms and their relations with L

p

spaces.
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The Fourier transform and its inverse are extended to members of S

0

by

hFf; �i = hf;F�i hF

�1

f; �i = hf;F

�1

�i for � 2 S: (A.56)

This operator F : S

0

! S

0

is sequentially continuous, and its restrictions to S, L

1

and L

2

agree with the Fourier transforms de�ned in (A.51) and (A.54).

The letter � will commonly be used without separate mention for the variable on the

Fourier transform side, whereas x will be used for the variable on the untransformed

side.

Some additional properties of the Fourier transform include the following:

F(@

�

f)(�) = (i�)

�

^

f(�) for f 2 S

0

(A.57)

F(�

�

f) = �

�n

�

1=�

^

f for f 2 S

0

; (A.58)

FFf(x) = F

�1

F

�1

f(x) =

�

f(x) := f(�x) for f 2 S

0

; (A.59)

the Convolution theorem

F(f � g)(�) = (2�)

n=2

^

f(�) bg(�) (A.60)

for f 2 L

1

; g 2 L

1

[ L

2

or f 2 S

0

; g 2 D

0

0

, the Parseval formula

jjFf jj

L

2
= jjf jj

L

2
for f 2 L

2

; (A.61)

the Plancherel formula

4

(f; g) = (

^

f; bg) for f; g 2 L

2

(A.62)

hf; �i = h

^

f;

b

�i for f 2 S

0

; � 2 S (A.63)

and the Riemann-Lebesgue lemma

lim

jxj!1

^

f(x) = 0 for f 2 L

1

: (A.64)

As (A.58) suggests,

F(�) = lim

"!0

F("

�n

�

1="

e) = lim

"!0

�

"

be = 1; (A.65)

when e is an approximate delta function.

References [Hör], [Ner], [Rau, Chapter 2], and [Ru2, Chapter 9] provide an introduc-

tion to the Fourier transform, together with proofs of these facts.

4

The resemblance between the names Parseval and Plancherel causes some inconsistency as to

which name refers to which one of these two equivalent formulae. We choose to call the former one

(A.61) the Parseval formula, and the latter one (A.62), (A.63) the Plancherel formula.
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A.1.5 H

s

Spaces

For the Sobolev spaces H

k

(R

n

) with k 2 N, de�ned in Chapter 2, we note that an

equivalent de�nition is

H

k

(R

n

) =

�

f 2 L

2

(R

n

) jD

�

f 2 L

2

(R

n

) for all � 2 N

n

with j�j � k

	

: (A.66)

This is obvious because if j�j � k,

j�

�

j =

n

Y

j=1

j�

j

j

�

j

�

n

Y

j=1

j�j

�

j

= j�j

k

� (1 + j�j

2

)

k=2

(A.67)

implies that

jjD

�

f jj

L

2
= jjF(D

�

f)jj

L

2
= jj�

�

^

f jj

L

2
� jj(1 + j�j

2

)

k=2

^

f jj

L

2
; (A.68)

and on the other hand,

(1 + j�j

2

)

k=2

�

�

1 +

n

X

j=1

j�

j

j

�

k

=

X

j�j�k

c

�

j�

�

j (A.69)

implies that

jj(1 + j�j

2

)

k=2

^

f jj

L

2
�

X

j�j�k

jc

�

j jjj�

�

j

^

f jj

L

2

=

X

j�j�k

jc

�

j jjF(D

�

f)jj

L

2

=

X

j�j�k

jc

�

j jjD

�

f jj

L

2

(A.70)

so that jj(1 + j�j

2

)

k=2

^

f jj

L

2
<1 if and only if jjD

�

f jj

L

2
<1 whenever j�j < k.

A.2 Continuity of the Riesz Potentials

The de�nition of the Riesz potential, given in De�nition 3.2, can be generalised: The

Riesz potential of order � 2 R of the function f : R

n

! C is the function R

�

� f ,

where

R

�

=

�

�

n��

2

�

�

n=2

2

�

�

�

�

2

�

jxj

��n

: (A.71)

Texts that use the notation I

1

instead of R

1

�, also use I

�

instead of R

�

�.

The mappings f 7! R

�

�f have the following continuity properties, which are needed

in the proof of Theorem 4.12. Instead of giving the proofs, we refer to [Ste] and [Zie].
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Theorem A.7. If � > 0, 1 < p < 1 and �p < n, then there is a constant C,

depending on n and p, such that

jjjxj

��n

� f(x)jj

L

q

� C jjf jj

L

p

; (A.72)

where

q =

np

n� �p

(A.73)

for all f 2 L

p

(R

n

).

Proof. See [Zie, Theorem 2.8.4, page 86] or [Ste, Theorem V.1(b), page 119].

Theorem A.8. If E � R

n

is compact and p > 1, then there are constants C

1

and

C

2

, depending only on p, n and E, such that

1

m(E)

Z

E

exp

2

4

 

jxj

n=p�n

� f(x)

C

1

jjf jj

L

p

!

p

0

3

5

dx � C

2

(A.74)

for all f 2 L

p

(E).

Proof. See [Zie, Theorem 2.9.1, page 89].

These two theorems imply that for all n � 2, the Riesz potential operator is locally

bounded from L

2

(R

n

) to some L

q

(R

n

).

Corollary A.9. If n � 2, and E � R

n

is compact, then there are constants q � 2

and C > 0 such that

jj�

E

R

1

� f jj

L

q

� C jjf jj

L

2
(A.75)

for all f 2 L

2

(R

n

).

Proof. For n � 3, the result follows directly from the global estimate of Theorem A.7

with � = 1 and p = 2. If n = 2, note that the expression te

�t

is bounded by some

constant C

3

for all t > 0. Theorem A.8 with p = 2 therefore implies that for any

compact set E � R

n

,

Z

E

�

�

�

�

R

1

� f(x)

C

1

jj�

E

f jj

L

2

�

�

�

�

2

dx �

Z

E

�

R

1

� jf j(x)

C

1

jj�

E

f jj

L

2

�

2

dx

� C

3

Z

E

exp

"

�

R

1

� jf j(x)

C

1

jj�

E

f jj

L

2

�

2

#

dx

� C

3

C

2

m(E)

(A.76)

and therefore

jj�

E

R

1

� f jj

L

2
=

s

Z

E

jR

1

� f(x)j

2

dx � C jj�

E

f jj

L

2
� C jjf jj

L

2
; (A.77)

where C = C

1

p

C

3

C

2

m(E).
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A.3 Polar and Spherical Coordinates in R

n

In R

n

, n � 2, an integral

R

D

f(x) dx can often be easily evaluated using polar co-

ordinates if the integrand f and domain of integration D � R

n

possess appropriate

symmetry.

If x = (x

1

; x

2

; : : : ; x

n

) 2 R

n

, the simplest form of polar coordinates is the well known

r = jxj 2 [0;1); � =

x

r

2 S

n�1

; x = r� (A.78)

so that

Z

D

f(x) dx =

Z

D

�

Z

D

r

f(r; �) r

n�1

dr d� (A.79)

when

D =

�

r� 2 R

n

�

�

r 2 D

r

� [0;1); � 2 D

�

� S

n�1

	

: (A.80)

When n = 1, this holds equally well, if the counting measure is used on D

�

� S

0

=

f�1;+1g:

Z

D

�

f(�) d� =

X

�2D

�

f(�): (A.81)

In this case, (A.79) simply becomes

Z

D

f(x) dx =

Z

(�1;0]\D

f(x) dx+

Z

[0;1)\D

f(x) dx: (A.82)

The same formalism can thus be used regardless of the dimension. We shall focus

on the cases n � 2 for the rest of this section.

If f = f(r) is spherically symmetric,

Z

D

f(x) dx = m(D

�

)

Z

D

r

f(r) r

n�1

dr: (A.83)

A simple application of this is the calculation of the measures of the unit balls and

spheres in di�erent dimensions:

Lemma A.10. For all n 2 Z

+

,

jS

n�1

j =

2�

n=2

�

�

n

2

�

= n jB

n

j; jB

n

j =

2�

n=2

n�

�

n

2

�

: (A.84)

Proof. For calculating jS

n�1

j, we shall evaluate the integral

I =

Z

R

n

e

�jxj

2

(A.85)

in two ways. Firstly, since

Z

1

�1

e

�x

2

dx =

s

Z

1

�1

e

�x

2

dx

Z

1

�1

e

�y

2

dy =

s

Z

1

�1

Z

1

�1

e

�(x

2

+y

2

)

dx dy

=

s

Z

2�

0

Z

1

0

e

�r

2

r dr d� =

s

2�

�

1

0

�

e

�r

2

2

=

p

�;

(A.86)
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we get

I =

�

Z

1

�1

e

�x

2

dx

�

n

= �

n=2

: (A.87)

Secondly,

I =

Z

S

n�1

Z

1

0

e

�r

2

r

n�1

dr d�; (A.88)

whence, by making the substitution u = r

2

, du = 2r dr, we get

I = jS

n�1

j

1

2

Z

1

0

e

�u

u

n

2

�1

du =

1

2

jS

n�1

j�

�

n

2

�

: (A.89)

Therefore,

jS

n�1

j =

2�

n=2

�

�

n

2

�

; (A.90)

proving the �rst part of the claim. The second part follows immediately by using

polar coordinates:

jB

n

j =

Z

B

n

dx =

Z

S

n�1

Z

1

0

r

n�1

dr d� =

jS

n�1

j

n

: (A.91)

Even when f is not spherically symmetric, the evaluation of (A.79) is rather straight-

forward in the two-dimensional case, in the sense that both D

r

� [0;1) and D

�

� S

1

are one-dimensional.

For n � 3, D

�

must be parametrised using n � 1 � 2 real numbers. In some

cases, this can be done by introducing the spherical coordinates r 2 D

r

� [0;1),

' 2 D

'

� [0; �] and ! = (!

1

; !

2

; : : : ; !

n�2

) 2 D

!

� B

n�2

:

x

1

= r cos'

x

2

= r!

1

sin'

x

3

= r!

2

sin'

.

.

.

x

n�1

= r!

n�2

sin'

x

n

= �r sin'

v

u

u

t

1�

n�2

X

k=1

!

2

k

:

(A.92)

The expression for x

n

can be simpli�ed to x

n

= r!

n�1

sin' by considering

~! := (!

1

; !

2

; : : : ; !

n�2

; !

n�1

) 2 S

n�2

; !

n�1

= �

v

u

u

t

1�

n�1

X

k=1

!

2

k

: (A.93)

When r and ' are �xed, ~! runs over S

n�2

and ! runs twice over B

n�2

, so both cases

of the � sign must be covered. (See Figure A.3.)
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The Jacobian determinant is obtained as follows:
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�
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=
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Subtracting the second column, multiplied by

sin'

cos'

, from the �rst column and then

developing the determinant with respect to the �rst column, we get
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Now, subtracting the second through last column from the �rst, multiplied by !

1

,

!

2

, : : : , !

n�2

, respectively, yields, since !
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Thus,

Z

D

f(x) dx =

Z
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r

Z
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where f

+

and f

�

correspond to the two signs in (A.92). Analogously for D � S

n�1

,

we have

Z

D

f(�) d� =

Z

D

'

Z

D

!

�

f

+

('; !) + f

�

('; !)

�

sin

n�2

'

q

1�

P
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!

2
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d! d': (A.98)

In cases where the domain of integration D

!

is all of B

n�2

and f does not depend on

! or the sign of !

n�1

, the integral with respect to ! in (A.97) and (A.98) evaluates

to jS

n�2

j, as expected:

Lemma A.11.

2

Z

B

n�2

d!

p

1� j!j

2

= jS

n�2

j: (A.99)

Proof. Using the polar coordinates of R

n�2

� B

n�2

,

2

Z
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p

1� j!j

2

= 2 jS

n�3

j

Z
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n�3

p

1� r

2

dr: (A.100)

On the other hand, remembering Formula (A.84) for jS

n�1

j, we have
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whence it su�ces to show that
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To do this, we �rst note that since

Z

1

0

r

k

p

1� r

2

dr =

Z

1

0

r

k�1

r

p

1� r

2

dr

= �

�

1

0

�

r

k�1

p

1� r

2

�

+ (k � 1)

Z

1

0

r

k�2

p

1� r

2

dr

= (k � 1)

Z

1

0

r

k�2

p

1� r

2

(1� r

2

) dr

= (k � 1)

Z

1

0

r

k�2

p

1� r

2

dr � (k � 1)

Z

1

0

r

k

p

1� r

2

dr;
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we have the recursion formula
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k � 1
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for all k � 2. Now if n is even,
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(A.105)
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and analogously
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so (A.104) gives us
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as claimed. If n is odd, we see similarly that
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which completes the proof.

We have thus derived the following rule for evaluating integrals using spherical co-

ordinates:

Lemma A.12. If n � 2 and

D =
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; : : : ; x
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;�x
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where
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then
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If furthermore D

!

= B

n�2

and g(r; ') = f

+

(r; '; !) = f
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(r; '; !) for all r, ' and
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Note that in the special case n = 2, we have D

!

= B

0

= f0g,

Z

D

!

 (r; '; !) d! =  (r; '; 0) (A.114)

using the counting measure, and

(

x = r cos'

y = r sin'

(A.115)

is just the familiar polar coordinate representation in the plane, with the exception

that here ' 2 [0; �] and the two semicircles S

1

+

(�e

2

) are covered using f

�

.

When integrating over the unit sphere or part of it, we have the following analogous

result:
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where �

i
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i
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i
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then
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If furthermore D

!

= B
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The domains D

r

, D

'

and D

!

are here, for some sample domains D, the following:
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Table of Notation

Notation Meaning See page

] Angle 71

:=;=: De�nition, assignment of value 5

� Convolution 85, 92

b

Fourier transform 93

_

Re�ection 92

�

?

Orthogonal complement of � 13

A Closure of set A 92

z Complex conjugate of complex number z

B

k

Unit ball of R

k

5

B(x

0

; R) Open ball with radius R and centre at x

0

5

C

k

Space of k times continuously di�erentiable functions 7

C

k

0

Space of C

k

functions with compact support 7

D

�

;D

j

Distribution derivative 91

D Divergent beam radiograph 8

D Space of smooth functions with bounded support 88

D

0

Space of distributions 89

D

0

0

Space of distributions with compact support 92

dist Distance 5

D

xr

X-ray domain 39

e

j

j

th

unit basis vector 4

E Space of smooth functions 92

E

0

Space of distributions with compact support 92

E

�

Orthogonal projection onto �

?

13

F Fourier transform 93

F

�1

Inverse Fourier transform 93

H

s

(R

n

) Sobolev space of order s 7

K

"

(�

0

) Cone with aperture " and axis �

0

68

L

p

Space of functions whose p

th

power is integrable 7

L

p

loc

Space of functions whose p

th

power is locally integrable 7

L

1

Space of essentially bounded functions 7

N The set of natural numbers f0; 1; 2; : : : g 4

P Parallel beam radiograph 13

p: v: Principal value 22, 88

104
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R Radon transform 9

R

1

Riesz kernel 10

R Real �eld 4

R

n

n-dimensional space 4

S Schwartz space of rapidly decreasing functions 89

S

0

Space of tempered distributions 91

S

n�1

Unit sphere in R

n

5

S

n�1

(x

0

; R) Sphere with radius R and centre x

0

5

S

n�1

+

(y) Hemisphere closest to y 5

singsupp Singular support 68

supp Support 91

WF Wave front 68

Z Set of integers f: : : ;�2;�1; 0; 1; 2; : : : g 4

Z

+

Set of positive integers f1; 2; 3; : : : g 4

@

�

; @

j

Classical partial derivative 6

@A Boundary of the set A 5

�

X

Characteristic function of the set X 5

~�

"

1

;"

2

Approximate characteristic function of B(0; "

1

) 89

� Calderón operator, inverse of R

1

� 11

�

�

Dilation 91
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