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What is Tustin’s method? (1)

Consider the finite-dimensional continuous time system

S :

{
z′(t) = Az(t) +Bu(t),

y(t) = Cz(t) +Du(t),

where A is a n× n matrix, and the input u(·) and the

output y(·) are, for simplicity, scalar.

The mapping

G : u(·) 7→ y(·)
is the I/O map of S, and its Laplace transform is the

transfer function Ĝ(s) = C(s− A)−1B +D.
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Please, don’t panic.

This is supposed to be
a relatively

non-technical talk!
(Albeit on a quite technical matter.)

For your continued pleasure, details such as initial

conditions and times, various norms and Hilbert spaces,

etc., are intentionally and almost completely omitted.

Milano, September 2011 2



What is Tustin’s method? (2)

Define the operators

Aσ := (σ + A)(σ − A)−1,

Bσ :=
√
2σ(σ −A)−1B,

Cσ :=
√
2σC(σ −A)−1,

Dσ := Ĝ(σ),

where we define σ := 2/h and h > 0 is called the time

discretization parameter.
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What is Tustin’s method? (3)

The Tustin transform of S is a family of discrete time

systems

φσ :

{
z
(h)
j = Aσz

(h)
j−1 +Bσu

(h)
j ,

y
(h)
j = Cσz

(h)
j−1 +Dσu

(h)
j ,

for any σ > 0.

The mapping

Dσ : {u(h)
j }j∈Z 7→ {y(h)j }j∈Z

is the I/O map of φσ, and its Z-transform is the transfer

function D̂σ(z) = Cσz(I − zAσ)
−1Bσ +Dσ.
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What is Tustin’s method? (4)

To approximate S with Tustin transforms φσ, we need

to connect the continuous and discrete signals some-

how.

We define {u(h)
j }j∈Z = Tσu where the discretising (or

sampling) operator Tσ, σ = 2/h > 0, is given by

u
(h)
j =

1√
h

∫ jh

(j−1)h

u(t) dt for all j ∈ Z.

The interpolation (or hold) operator T ∗

σ is the L2-

adjoint of Tσ. It maps discrete signals back to continu-

ous signals.
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Where is Tustin’s method used?

Simulation of linear dynamical systems.

(i) Sure, there are more efficient numerical algorithms

for, e.g., parabolic distributed parameter systems...

(ii) ...but there is a need for a time discretization method

that is easy to implement, theoretically simple, well-

known in finite dimensions, and it preserves energy

conservativity / dissipativity.

Tustin’s method is the Leatherman multi-tool for

time discretization in numerical analysis.
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But does it converge as h → 0+?

Yes, it does

if S is stable and has a finite-dimensional state space.

The keyword is Crank-Nicolson in numerics literature.

Unfortunately, the convergence is far from clear when

the state space of S is infinite-dimensional.
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Motivation of the inf.-dim. problem

Take any infinite-dimensional Distr. Param. System.

Computers solve fin.-dim. problems obtained by a

spatial discretization such as FEM or FDM.

For these fin.-dim. problems, the convergence of the

Tustin’s method for temporal discretization is clear.

But: Increasing the spatial resolution, we may run into

deep trouble if the original inf.-dim. system itself does

not behave well under Tustin’s method.

Now, what do we mean by infinite-dimensional

systems?
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Infinite dimensional systems (1)

Many linear PDEs define dynamics whose state space

is an inf.-dim., separable Hilbert space.

Think of the wave equation, linear elasticity, or why

not the generalized Webster’s PDE with curvature and

boundary dissipation for φ̄ = φ̄(s, t)

1

A(s)

∂

∂s

(
A(s)

∂φ̄

∂s

)
− 2παW (s)

A(s)

∂φ̄

∂t
− 1

c2Σ(s)2
∂2φ̄

∂t2
= F

defining a dissipative, well-posed boundary control sys-

tem (with the right boundary ctrl/obs operators).

Transmission graphs. Delay equations. Etc.
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Infinite dimensional systems (2)

All these and many other linear systems can be repres-

ented in the dynamical form

[
z′(t)

y(t)

]
=

[
A&B

C&D

] [
z(t)

u(t)

]

where the system node S = [ A&B
C&D ] is an operator-

valued generalization of the block matrix [A B
C D ].

The Tustin’s method can be extended to system nodes.

Indeed, the resulting DLS φσ is known as the Cayley or

bilinear transform of S in Mathematical System Theory.
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Approximation of the I/O mapping

We say that S is I/O stable if Ĝ ∈ H∞(C+)

For I/O stable S and for any u ∈ L2(R) we have

‖T ∗

σGσTσu−Gu‖L2(R) → 0

as σ = 2/h → ∞.

This was proved by Havu and Malinen in 2005.

An extension to multivariate signals is an easy piece.

An unpublished version of the result exists for S whose

input and output are in a separable Hilbert space.
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Convergence in the state space?

So, Tustin’s method “saves the phenomena” as they

appear outside the state space.

How about the convergence of the corresponding state

trajectories of S and φσ as σ → ∞?

Can we approach this problem using system nodes?

System nodes are a very big class, containing wildly

different kinds of dynamics. Too general as such.

Energy conservativity appears to be a key factor in

getting somewhere.
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A reminder of conservativity

Conservativity is defined by energy balances; the solu-

tions satisfy in continuous time for S

d

dt
‖z(t)‖2X = |u(t)|2 − |y(t)|2 for t ∈ R

and in discrete time for φσ

‖z(h)j ‖2X − ‖z(h)j−1‖2X = |u(h)
j |2 − |y(h)j |2 for j ∈ Z.

We use an energy norm ‖·‖X in the common state

(Hilbert) space X of S and φσ. Physics!

Dissipativity is defined by replacing the equalities above

by inequalities ≤.
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Approximation of the final state (1)

“Let S = [ A&B
C&D ] be a conservative system node with

scalar input and output, whose semigroup is completely

non-unitary, and transfer function Ĝ(·) is inner.”

This jargon plainly means that

(i) energy is neither created or dissipated by S,

(ii) all energy that goes into S also comes out, and

(iii) there is no externally invisible subspace

in the state space X.
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Approximation of the final state (2)

Take a twice continuously differentiable input signal

u(t) for t ∈ [−T, 0], and discretize it

{u(h)
j }j=−Jh,...,0 = Tσu

using time step h = 2/σ > 0 where Jh ≈ T/h.

Obtain the final state z(0) of S using u as the input

with z(−T ) = 0. Similarly, get the final state z
(h)
0 of

φσ using {u(h)
j } as the input and z

(h)
−Jh

= 0. Then

lim
h→0+

‖z(h)0 − z(0)‖X = 0.
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Comments on the proof

To prove this theorem,

• we first prove the same result for a canonical Hankel

range realization ΣG of the transfer function Ĝ of S,

• we then use the State Space Isomorphism Theorem

to show that ΣG and S are actually the same thing

— apart from a unitary (but otherwise very sick)

equivalence of their state spaces...

• ... and finally note that the result does not depend

on the unitary change of coordinates in the state.
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Comments on generalizations

There is an extension to vector-valued signals u and y.

This was proved by Havu and Malinen in 2010.

It seems possible to remove the assumption that Ĝ(·) is
inner by using a more complicated canonical realization

than Hankel range.

It seems plausible that adding dissipation to S should

make it “better behaved” but it is not at all clear how

to prove it.
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Mathematical System Theory...

... is a theory of classes and generalities.

MST results are typically not the best possible for any

particular application or instance.

Instead, MST results and concepts should be general

wisdom that is easy to communicate:

Tustin’s method converges as expected

even for a wide and relevant class of

infinite-dimensional state space systems.

Convergence speed estimates are not possible on this

level of generality.

Milano, September 2011 18



Most Important References

Arov, D. and Gavrilyuk, I. (1993). A method for solv-

ing initial value problems for linear differential equations

in Hilbert space based on the Cayley transform. Nu-

merical Functional Analysis and Optimization, 14(5&6),

459–473.

Gavrilyuk, I.P. and Makarov, V.L. (1994). The

Cayley transform and the solution of an initial value

problem for a first order differential equation with an

unbounded operator coefficient in Hilbert space. Nu-

merical Functional Analysis and Optimization, 15(5&6),

583–598.

Milano, September 2011 19



Havu, V. and Malinen, J. (2005). Laplace and

Cayley transforms – an approximation point of view. In

Proc. of the Joint 44th IEEE Conference on Decision

and Control and European Control Conference.

Havu, V. and Malinen, J. (2007). Cayley transform

as a time discretization scheme. Numerical Functional

Analysis and Applications, 28(7), 825–851.

Havu, V. and Malinen, J. (2010). State approxima-

tion for conservative systems. Manuscript, 29 pages.

Staffans, O.J. (2004). Well-Posed Linear Systems.

Cambridge University Press, Cambridge.

Milano, September 2011 20



That’s all, folks!

Have a nice day.
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