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Abstract

Numerical modelling of several coupled passive linear dynamical systems (LDS) is considered. Since such component systems
may arise from partial differential equations, transfer function descriptions, lumped systems, measurement data, etc., the first step is
to discretise them into finite-dimensional LDSs using, e.g., the finite element method, autoregressive techniques, and interpolation.
The finite-dimensional component systems may satisfy various types of energy (in)equalities due to passivity that require translation
into a common form such as the scattering passive representation. Only then can the component systems be coupled in a desired
feedback configuration by computing pairwise Redheffer star products of LDSs.

Unfortunately, a straightforward approach may fail due to ill-posedness of feedback loops between component systems.
Adversities are particularly likely if some component systems have no energy dissipation at all, and this may happen even if
the fully coupled system could be described by a finite-dimensional LDS. An approach is proposed for obtaining the coupled
system that is based on passivity preserving regularisation. Two practical examples are given to illuminate the challenges and the
proposed methods to overcome them: the Butterworth low-pass filter and the termination of an acoustic waveguide to an irrational
impedance.

I. INTRODUCTION

In practical modelling work, various kinds of linear dynamical systems need be interconnected. The ultimate purpose is to
produce computer software that is able to approximate the composite system behaviour in frequency and time domains to a
sufficient degree. Not only is the discretisation of the component systems a challenge in itself (not to be addressed in this
work), but also the original, undiscretised component systems may be represented in various mutually incompatible ways. The
purpose of this article is to show how tools from mathematical systems theory can be used to overcome these challenges in
mathematical modelling.

Let us continue the discussion in terms of an example from acoustics that will be treated in Section VIII-B below. The
Webster’s lossless horn model
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∂
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(
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∂ χ

)
for all χ ∈ (0, L) and t ≥ 0 (1)

describes the longitudinal acoustics of a tubular acoustic waveguide of length L and the intersectional area A = A(χ) where
c > 0 denotes the speed of sound. The solution φ = φ(t, χ) is the velocity potential, and the (perturbation) volume velocity
i = i(t, χ) and the sound pressure p = p(t, χ) are given by i = −A(χ) ∂φ∂χ and p = ρ ∂φ∂χ , respectively, where ρ > 0 is the density
of the medium. The external control for Eq. (1) takes place through the boundary conditions
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∂φ

∂ χ
(0, t) = i1(t) and A(L)

∂φ

∂ χ
(L, t) = i2(t) for t ≥ 0 (2)

where the acoustic volume velocities i1 and i2 represent input signals of corresponding to currents at the ends of the waveguide.
There is an output signal at both ends of the waveguide, given by

p1(t) = ρ
∂φ

∂t
(0, t) and p2(t) = ρ

∂φ

∂t
(L, t) for t ≥ 0 (3)

that represent sound pressures that are the acoustic counterparts of voltages.
Now, consider the end χ = L of the waveguide in Eqs. (1)–(3) to be coupled to infinitely large exterior space where both the

parameters c and ρ remain the same. A classical and much used model for the exterior space acoustics is provided by Morse
and Ingard [1] where they consider a piston (with diameter a > 0) in a cylinder that opens to the 3D half space bounded by
a hard, perfectly reflecting wall. Instead of giving a time-domain model such as Eq. (1), [1] derives a mechanical impedance.
In terms of the acoustical impedance, the piston model is given by the irrational analytic function
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)))

for Re s > 0 (4)

where Z0 = ρc/A0, A0 = πa2, is the characteristic impedance of an acoustic waveguide having a constant cross-section area
A0, and J1(·) and H1(·) are the Bessel and Struve functions, respectively; see [2, Eqs. (9.1.20) and (12.1.6)].
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Rigorously treating the direct coupling of the two infinite-dimensional conservative dynamical systems described by Eqs. (1)–
(3) and Eq. (4) appears to be quite difficult. If also the exterior space system of Eq. (4) was given as a PDE in terms of a boundary
control system in time domain, then both the systems in Eqs. (1)–(3) and Eq. (4) could thus be described using impedance
conservative strong boundary nodes due to their finite-dimensional signals; see [3, Definition 4.4 and Theorem 4.7]. Then
their composition could be understood as a transmission graph whose impedance conservativity and internal well-posedness
follows from [4, Theorem 3.3]. Another popular framework for treating such couplings is provided by the port-Hamiltonian
systems in, e.g., [5] and the references therein. The objective of this article is, however, more practical: to propose methods
for coupling finite-dimensional, (spatially) discretised versions of systems that are suitable for numerical simulations. We seek
to approximate Eqs. (1)–(3) by the finite-dimensional linear dynamical system Σac given by

x ′(t) = Aac x(t) + Bac

[
i1(t)
i2(t)

]
,[

p1(t)
p2(t)

]
= Cac x(t) for t ≥ 0,

and Eq. (4) by the transfer function

p̂2(s) =
(
Dex + Cex(s − Aex)

−1Bex

)
î2(s) for Re s > 0

of another finite-dimensional system Σex . Possible choices for the approximations, Finite Element Method (FEM) and Löwner
interpolation, are discussed in Sections VIII-B1 and VIII-B2, respectively. The required feedback connection between Σac and
Σex can — at least in principle — be computed as the Redheffer star product (see, e.g., [6, Section 4], [7, Section 10], [8,
Chapter XIV]) of certain externally Cayley transformed versions of systems Σac and Σex as explained in Section VI below.

Unfortunately, complications due to the lack of well-posedness of the explicitly treated feedback loop make it sometimes
impossible to directly compute the closed loop system. Within passive systems, these complications are typically showstoppers
for those systems that are, in fact, conservative. Indeed, conservative systems lack all energy dissipative mechanisms that could
help feedback loops to satisfy a version of the Nyquist stability criterion. That the system described by Eqs. (1)–(3) is, indeed,
(impedance) conservative follows from [9, Corollary 5.2] recalling [3, Definition 3.2]. Our approach is to artificially regularise
such systems to be properly passive (see Definition 3) by adding artificial resistive losses scaled by a regularisation parameter
ε, carrying out the feedback connection using the Redheffer star product for ε > 0, and finally extirpating the singular terms at
ε = 0 while letting ε → 0 in order to remove the regularisation. A tractable example of this process is given in Section VIII-A
whereas the resistive regularisation is used for spectral tuning in Section VIII-B.

Both the models in Eqs. (1) and (4) were originally derived by theoretical considerations which is not always feasible or even
necessary. A sufficient approximation of time- or frequency-domain behaviour can often be obtained by measurements, leading
to empirical models whose quality is typically not assessed by, say, mathematical error estimates rather than by validation
experiments. In time domain, autoregressive techniques such as Linear Prediction (LP, or LPC) can be used to estimate the
parameters of a (discrete time) rational filter from measured signals, however, often under some a priori model assumptions.
For example, the filter transfer function is always all-pole in [10], [11], and this is relevant for transimpedances of transmission
lines (such as the one defined by Eqs. (1)–(3)) and their counterparts consisting of discrete components (such as the passive
circuit for the fifth order Butterworth filter with impedance given by Eq. (51)). The subsequent realisation of the rational
filter transfer function as a discrete time linear system can be carried out by using, e.g., the controllable canonical realisation
(see [12, Theorem 10.2], [13, Section 4.4.2] [7, Section 3]). The transformation to a continuous time system, if necessary,
is best carried out using the inverse internal Cayley transformation (see, e.g., [14], [15, Section 12.2]), and the systems can
finally be coupled using properly passive regularisation and the Redheffer star product.

Considering the empirical modelling in frequency domain, direct impedance measurements from physical circuits could be
used as interpolation data for Löwners method; see, e.g., [13, Section 4.5]. In high frequency work on electronic devices, one
would prefer using scattering parameter data to start with, produced by a Vector Network Analyser (VNA), for interpolation
in a similar manner. In all cases, the outcome would be a quadruple of four matrices A, B,C and D giving rise to dynamical
systems in Eq. (5) and transfer functions in Eq. (18) below. Numerical performance may require additional dimension reduction
by, e.g., interpolation or balanced realisations; see, e.g., [13, Section 7], [16, Section 10], [17].

The purpose of this article is to present an economical toolbox of mathematical systems theory techniques that is — at least
within reasonable approximations, regularisations, and validations — rich enough for creating numerical time-domain solvers
of physically realistic passive linear feedback systems that are composed of more simple passive components. The proposed
toolbox is introduced in a fairly self-contained manner, and it consists of basic realisation algebra and system diagrams
(Section III), internal and external transformations of realisations (Section IV), and passivity preserving regularisation methods
for treating possible singularities in system matrices (Section VII). Our focus is to show how these tools can be fruitfully used
in simulations of two physically motivated applications in Section (VIII). The inconvenient singularities may appear as three
kinds of showstoppers:

(i) Realisability: There are impedance conservative systems in finite dimensions that cannot be described in terms of
realisation theory of Section II.
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(ii) Well-posedness: There are feedback configurations of scattering conservative systems that are not well-posed, and, hence,
cannot be treated within finite-dimensional systems as such.

(iii) Technical issues: There may be a technical, restrictive but removable assumption that is required only by the mathematical
apparatus.

A trivial example of a non-realisable impedance conservative, non-well-posed physical system is the impedance ZL(s) := sL
of a single inductor or the admittance AC(s) := sC of a single capacitor since lim |s |→∞ ZL(s) = lim |s |→∞ AC(s) = ∞ whereas
lim |s |→∞GΣ(s) = D in Eq. (18) for any finite-dimensional system Σ. The most trivial example of a non-well-posed feedback
loop is provided by G(s) = (s − 1)/(s + 1) and K(s) ≡ 1 that are both transfer functions of a finite-dimensional scattering
conservative systems whereas the closed loop transfer function (s − 1)/2 is not a transfer function of any finite-dimensional
system. An example of a technical issue can be found in Section VI if one attempts to compute the Redheffer star product
using the chain transformation and Theorem 15: There is an extra invertibility condition required by the intermediate chain
transformation which is not required by the Redheffer star product as discussed right after Eq. (45). The challenge in using
finite-dimensional realisation theory for practical modelling is to avoid these three kinds of showstoppers by an expedient use
of what mathematical systems theory offers and regularise component systems when all other attempts fail.

As a side product, some extensions and clarifications of the underlying mathematical systems theory framework are indicated:
Theorem 2 and Corollary 3 for second order passive systems, the extended definition of the external Cayley transformation
allowing arbitrary characteristic impedances of coupling channels in Section IV-B, Propositions 12 and 13 for dealing with the
passivity properties of this extension as well as both the reciprocal transformations, and Theorem 18 for well-posedness of a
feedback connection of two impedance passive systems. An almost elementary proof of Theorem 15 on the computation of
Redheffer star products using chain scattering is provided in terms of system diagram rules and their state space counterparts
in Sections III-B and III-C. The new Definition 3 of proper passivity is due to the requirements of the regularisation process
introduced in Section VII.

II. BACKGROUND ON SYSTEMS AND PASSIVITY

In this article, we consider continuous time finite-dimensional linear (dynamical) systems described by the state space
equations {

x ′(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

or, briefly,
[
x ′(t)
y(t)

]
=

[
A B
C D

] [
x(t)
u(t)

]
for t ∈ I . (5)

The quadruple Σ =
[
A B
C D

]
defining Eq. (5) is identified with the linear system. The temporal domain I ⊂ R is an interval, and

it is not necessary to specify it for the purposes of this article except in Corollary 3.

Standing Assumption 1. We assume that all linear dynamical systems Σ are real and finite-dimensional in the sense that the
dimensions of the submatrices in Σ make Eq. (5) well-defined. We assume that all signals in systems are real and sufficiently
smooth for the classical solvability Eq. (5). Furthermore, all vector norms and inner products are assumed to be euclidean,
and all matrix norms are induced by the euclidean vector norm.

We call A the semigroup generator, D the feedthrough matrix, and B, C, input and output matrices, respectively. The input
signal u(·), the state trajectory x(·), and the output signal y(·) are all column vectors. We assume that D is always a square
matrix, and thus the input and output signals are of the same dimension.

System Σ =
[
A B
C D

]
is called impedance passive if the functions in Eq. (5) satisfy the energy inequality

d
dt
‖x(t)‖2 ≤ 2 〈u(t), y(t)〉 for all t ∈ I .

If this inequality is satisfied as an equality, the system is then called impedance conservative. Both of these properties can be
checked in terms of a Linear Matrix Inequality (LMI):

Proposition 1. Let Σ =
[
A B
C D

]
be linear system. Then Σ is impedance passive if and only if[

AT + A B − CT

BT − C −DT − D

]
≤

[
0 0
0 0

]
.

It is impedance conservative if and only if the inequality holds as an equality.

This is the finite-dimensional version of [18, Theorem 4.2(vi)].
A passive system is sometimes represented as a second order multivariate system as in Section VIII-B where Finite Element

discretisation is used.

Theorem 2. Let M , P, and K be symmetric positive definite m × m matrices of which M and K are invertible. Let F be a
m × k matrix and Q1, Q2 m × m matrices. Then the following holds:
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(i) The second order coupled system of ODEs{
Mz′′(t) + Pz′(t) + Kz(t) = Fu(t),
y(t) = Q1z(t) +Q2z′(t), t ∈ I

(6)

defines a linear system Σi (with the state space of dimension n = 2m) by
x ′(t) =

[
0 K1/2M−1/2

−M−1/2K1/2 −M−1/2PM−1/2

]
x(t) + 1√

2

[
0

M−1/2F

]
u(t)

y(t) =
√

2
[
Q1K−1/2 Q2M−1/2

]
x(t), t ∈ I

(7)

where x(t) := 1√
2

[
K1/2z(t)
M1/2z′(t)

]
.

(ii) Σi is impedance passive if and only if Q1 = 0 and Q2 =
1
2 FT .

(iii) Σi is impedance conservative if and only if P = Q1 = 0 and Q2 =
1
2 FT .

Observe that if M, P,K are positive scalars in a damped mass-spring system, then ‖x(t)‖2 = 1
2
K1/2z(t)

2
+ 1

2
M1/2z′(t)

2

which is the sum of the potential and kinetic energies. For this reason, the matrices M and K are called mass and stiffness
matrices, respectively, and they define the physical energy norm of the system requiring the normalisation 1/

√
2 in equations.

That Q1 = 0 is a necessary condition for impedance passivity reflects the fact that such physical systems must have co-
located sensors and actuators in the sense of, e.g., [19]. A scattering conservative analogue of Theorem 2 is given in [20,
Theorems 1.1 and 1.2] in infinite dimensions.

Proof. Claim (i): The transfer function of the system described by Eq. (6) is given by

G(s) = (Q1 + sQ2)
(
s2M + sP + K

)−1
F =

(
Q1

s2 +
Q2
s

) (
M +

P
s
+

K
s2

)−1
F .

Since M is invertible, the matrix M + P
s +

K
s2 is invertible for all s with |s | large enough, implying Di := lim |s |→∞G(s) = 0.

Hence, the feedthrough matrix Di vanishes for any realisation modelling Eq. (6). Otherwise, it is a matter of straightforward
computations to see that Eqs. (6) and (7) are equivalent; see the proof of Corollary 3 where the invertibility of K is not
assumed.

Claim (ii): By Proposition 1 and the invertibility of K and M , the system Σi is impedance passive if and only if

[
0
]︸︷︷︸

m×m

[
0
]︸︷︷︸

m×m

QT
1[

0
]︸︷︷︸

m×m

P QT
2 −

1
2 F

Q1 Q2 −
1
2 FT

[
0
]︸︷︷︸

m×m


≥

[
0
]︸︷︷︸

3m×3m

. (8)

To prove the nontrivial direction, assume that Σi is impedance passive. Then both P ≥ 0 and
[

P T
TT 0

]
≥ 0 where T := QT

2 −
1
2 F.

Lemma 4 implies that T = 0, i.e., Q2 =
1
2 FT . Eq. (8) with T = 0 implies

[
0 QT

1
Q1 0

]
≥ 0, and Q1 = 0 follows from Lemma 4.

Claim (iii): This can be directly seen from Eq. (8) which is satisfied as an equality in the impedance conservative case by
Proposition 1. �

In many cases, the stiffness matrix K ≥ 0 in Eq. (6) fails to be injective even though the mass matrix M > 0 is invertible.
The system in Section VIII-B1 is an example of this since the acoustic velocity potential is defined only up to an additive
constant, and nothing in the observed physics depends on such a constant. Note that if Q1 = 0 (a necessary condition for
passivity), there is nothing in Eq. (7) that requires invertibility of K . This motivates a variant of Theorem 2:

Corollary 3. Let M , P, and K be symmetric positive definite m × m matrices, and assume that M is invertible. Let F be a
m × k matrix and u(·) ∈ C([0,∞);Rk). Then the following holds:

(i) The linear system Σi associated to the differential equation
x ′(t) =

[
0 K1/2M−1/2

−M−1/2K1/2 −M−1/2PM−1/2

]
x(t) +

[
0

M−1/2F

]
u(t)

y(t) =
[
0 FT M−1/2

]
x(t), t ≥ 0,

(9)

is impedance passive.
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(ii) Let α ∈ range (K) and β ∈ Rm be arbitrary. Then the function x ∈ C1([0,∞);R2m), x(t) =
[
x1(t)
x2(t)

]
, satisfies Eq. (9) with

x(0) =
[ α
β

]
if and only if the function z ∈ C2([0,∞); Rm), given by

z(t) =
∫ t

0
M−1/2x2(τ) dτ + γ, t ≥ 0, (10)

satisfies x1(t) = K1/2z(t) and 
Mz′′(t) + Pz′(t) + Kz(t) = Fu(t),
y(t) = FT z′(t), t ≥ 0, and
z(0) = γ, z′(0) = M−1/2β

(11)

for some (hence, for all) γ ∈ Rm satisfying K1/2γ = α.

Note that Eq. (9) is equivalent with Eq. (7) if Q1 = 0 and Q2 =
1
2 FT apart from the normalisations by 1/

√
2. In particular,

the transfer functions given by Eqs. (7) and (9) are the same. To simulate the input/output behaviour of these systems, it is
possible to use α = β = γ = 0.

Proof. Claim (i) follows the same way as Claim (ii) of Proposition 1 since nothing in the proof depends on the invertibility of
K . For the rest of the proof, fix α ∈ range (K) = range

(
K1/2) and β ∈ Rm, and let γ be arbitrary such that K1/2γ = α holds.

Claim (ii), necessity: From Eq. (10) we get x2 = M1/2z′. Since x1 = K1/2z, it follows that[
0 K1/2M−1/2

−M−1/2K1/2 −M−1/2PM−1/2

] [
x1(t)
x2(t)

]
+

[
0

M−1/2F

]
u(t)

=

[
K1/2M−1/2x2(t)

−M−1/2K1/2x1(t) − M−1/2PM−1/2x2(t) + M−1/2Fu(t)

]
=

[
K1/2z′(t)

M−1/2 (−Kz(t) − Pz′(t) + Fu(t))

]
=

[
K1/2z′(t)
M1/2z′′(t)

]
=

[
x ′1(t)
x ′2(t)

]
where we used the assumption that Eq. (11) holds. Obviously,

[
0 FT M−1/2] x = FT M−1/2x2 = FT z′ = y and x(0) =[

K1/2z(0)
M1/2z′(0)

]
=

[
K1/2γ

M1/2M−1/2β

]
=

[ α
β

]
from which the necessity part follows.

Claim (ii), sufficiency: Assume that x(t) =
[
x1(t)
x2(t)

]
satisfies Eq. (9) with the initial condition x(0) =

[ α
β

]
, and define z by

Eq. (10) satisfying z′ = M−1/2x2 as well as the initial conditions z(0) = γ and z′(0) = M−1/2β. From the top row of the
first equation in Eq. (9) we conclude that x ′1 = K1/2M−1/2z2 = K1/2z′, and thus x1 = K1/2z + δ for some δ ∈ Rm. Now,

α = x1(0) = K1/2z(0) + δ = K1/2γ + δ = α + δ, and hence δ = 0. We have now concluded that x =
[ x1
x2

]
=

[
K1/2z
M1/2z′

]
, and the

differential equation in Eq. (11) follows from Eq. (9) by the computation given in the necessity part of this claim. Since the
observation equations in Eqs. (9) and (11) are equivalent, the proof is complete. �

It remains to give a technical lemma for the proof of Theorem 2:

Lemma 4. Let P and U be m × m matrices with P ≥ 0. Then
[

P U
UT 0

]
≥ 0 if and only if U = 0.

Proof. Only the “only if” part requires proof. By a change of basis, we may assume without loss of generality that U =
[
U0 0

]
where m1 := rank(U) > 0 and U0 =

[
®u1 . . . ®um

]T is an injective m × m1 matrix.
Now, removing some of the row vectors ®u jk ∈ R

m1 of U0 for k = 1, . . . ,m−m1 from U0, we get a m1 ×m1 invertible matrix
Ũ. Similarly removing jk’th column and row vectors from P for all k = 1, . . . ,m−m1 we obtain m1 ×m1 matrix P̃ ≥ 0 so that
Q :=

[
P̃ Ũ
ŨT 0

]
is a compression of

[
P U
UT 0

]
into a 2m1-dimensional subspace with the additional property that Ũ is invertible.

By the Schur complement, we observe that for any ε , 0 det
[

P̃ Ũ
ŨT εI

]
= det

(
εP̃ − ŨŨT

)
, and letting ε → 0 implies

det Q = det
(
−ŨŨT

)
= (−1)m1 det

(
ŨŨT

)
where det

(
ŨŨT

)
> 0 by positivity and invertibility. If m1 is odd, it directly follows

that det Q < 0 which contradicts Q ≥ 0 and, hence,
[

P U
UT 0

]
> 0.

It remains to consider the case when m1 is even. Because det(Ũ) , 0, some of its (i, j) minors for 1 ≤ i, j ≤ m1 is
nonvanishing. Define the invertible (m1 − 1) × (m1 − 1) matrix Û by removing the i’th row and j’th column from Ũ. Further,
define P̂ ≥ 0 by removing the i’th row and column from P̃. Thus, the matrix Q̂ :=

[
P̂ Û
ÛT 0

]
is a compression of Q into

2(m1 − 1)-dimensional subspace where m1 − 1 is now odd. The above argument shows that Q̂ ≥ 0 does not hold, and hence
the same holds for Q and

[
P U
UT 0

]
, too. �

Another important class are scattering passive systems. System Σ =
[
A B
C D

]
is scattering passive if the signals in Eq. (5)

satisfy the energy inequality
d
dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2 for all t ∈ I . (12)
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If this inequality is satisfied as an equality, then Σ is scattering conservative.
A simple characterisation of scattering passivity in terms of LMI’s such as Eq. (1) does not exists. However, a formulation

involving the resolvent of A is given in [15, Theorem 11.1.5] or [21, Proposition 5.2]; see also Proposition 7 below. However,
scattering conservative finite-dimensional systems can be characterised concisely:

Proposition 5. A linear system Σ =
[
A B
C D

]
is scattering conservative if and only if

A + AT = −CTC = −BBT , C = −DBT and DT D = I .

This follows from [21, Eqs. (1.4)–(1.5)].
We occasionally need also discrete time systems as time discretised versions of Σ as in Section VIII-B3. Also these systems

are defined in terms of quadruples of matrices φ =
(
Ad Bd
Cd Dd

)
associated with the difference equations{

xj+1 = Adxj + Bdu j,

yj = Cdxj + Ddu j,
or, briefly,

[
xj+1
yj

]
=

[
Ad Bd

Cd Dd

] [
xj
u j

]
for all j ∈ J ⊂ {. . . − 1, 0, 1, 2, . . .}.

(13)

We call system φ discrete time scattering passive ifxj+1
2
−

xj
2
≤

u j

2
−

yj2 for all j ∈ J, (14)

and discrete time impedance passive if xj+1
2
−

xj
2
≤ 2

〈
u j, yj

〉
for all j ∈ J . (15)

Moreover, such φ is scattering [impedance] conservative if the respective inequality is satisfied as an equality.

Proposition 6. Let φ =
(
Ad Bd
Cd Dd

)
a discrete time linear system. Then φ is scattering passive if and only if[

Ad Bd

Cd Dd

]T [
Ad Bd

Cd Dd

]
≤

[
I 0
0 I

]
. (16)

Similarly, φ is impedance passive if and only if[
I − AT

d
Ad CT

d
− AT

d
Bd

Cd − BT
d

Ad Dd + DT
d
− BT

d
Bd

]
≥

[
0 0
0 0

]
. (17)

The system is scattering or impedance conservative if and only if the respective inequality holds as an equality.

Indeed, Eqs. (16) and (17) are equivalent with Eq. (14) and (15), respectively, by Eq. (13).
We can now give a characterisation for passive continuous time systems Σ =

[
A B
C D

]
in terms of discrete time systems:

Proposition 7. Let Σ =
[
A B
C D

]
a linear system whose internal Cayley transform defined in Section IV-A below is denoted by

φσ =
(
Aσ Bσ
Cσ Dσ

)
for σ > 0. Then the following are equivalent:

(i) Σ is scattering [impedance] passive;
(ii) φσ is discrete time scattering [impedance] passive for some σ > 0; and

(iii) φσ is discrete time scattering [impedance] passive for all σ > 0.
The equivalences remain true if the word “passive” is replaced by “conservative”.

The scattering passive part is a finite-dimensional special case of [21, Proposition 5.2] or [18, Theorem 3.3(v)]. For the
impedance passive part, see [18, Theorem 4.2(v)] or use Proposition 1 with the identity

−

[√
2σ

(
σ − AT

)−1 0
BT

(
σ − AT

)−1 I

] [
A + AT B − CT

BT − C −D − DT

] [√
2σ (σ − A)−1 (σ − A)−1 B

0 I

]
=

[
I − AT

σAσ CT
σ − AT

σBσ
Cσ − BT

σAσ Dσ + DT
σ − BT

σBσ

]
for all σ > 0.

III. TRANSFER FUNCTIONS, REALISATIONS, AND SIGNALS

As discussed in the introduction, practical applications may require treating time-domain and frequency-domain models in
a same framework. Passive linear systems Σ =

[
A B
C D

]
were reviewed in time domain in Section II, and it remains to give the

frequency-domain description in terms of their transfer functions

GΣ(s) := D + C (s − A)−1 B for s < σ(A). (18)
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Given a matrix-valued rational function g(s), we call Σ a realisation of g(s) if g(s) = GΣ(s) for infinitely many s ∈ C.
Manipulating realisations is one way of carrying out computations on rational functions (such as required by feedback systems
analysis) in terms of matrix computations.

The first step is to describe the associative, typically non-commutative algebra (with unit) of rational transfer functions
GΣ(s) where the addition, scalar multiplication, and product of elements stand out as the elementary operations. Of course,
the input/output signal dimension m of system Σ must be the same within such algebra for these operation to be universally
feasible. Since the same rational transfer function has an infinite number of realisation, of which only some are controllable
and observable (i.e., have a minimal state space), the algebraic structure must be described in terms of equivalence classes
as described in Section III-A below. Symbolic and numerical computations must be carried out in terms of representatives of
these classes, using specific formulas and system diagrams for realisations introduced in Sections III-B and III-C.

A. Realisation algebra

Rational m × m matrix-valued rational functions constitute an algebra that can be described in terms of equivalence classes
of realisations. This provides us a way of carrying out practical computations with transfer functions by using numerical linear
algebra on their conveniently chosen realisations. We proceed to give a description of the rules of calculation involved.

We denote by Σ =
[
A B
C D

]
, Σp =

[
Ap Bp

Cp Dp

]
, and Σq =

[
Aq Bq

Cq Dq

]
linear systems with m-dimensional input and output signals.

All the matrices are assumed to be real, and the transfer functions of Σp and Σq are given by Gp(s) = Dp +Cp(sI − Ap)
−1Bp

and Gq(s) = Dq + Cq(sI − Aq)
−1Bq where we take the liberty of using complex valued s.

Definition 1. (i) Linear systems Σp and Σq are I/O equivalent if Gp(s) = Gq(s) for infinitely many s ∈ C. I/O equivalence
is denoted by Σp ∼ Σq .

(ii) The equivalence class containing Σp is denoted by
[
Σp

]
:=

{
Σ : Σ ∼ Σp

}
.

(iii) For m ≥ 1, we denote

ℵm := {[Σ] : The input and output signals of Σ are m dimensional }.

Thus, the equivalence class
[
Σp

]
and the transfer function Gp(s) are in one-to-one correspondence. In any nontrivial

equivalence class, say [Σ′], there are infinitely many systems Σ ∈ [Σ′] that are minimal in the sense that they are observable
and controllable; i.e.,

rank
[
B AB . . . An−1B

]
= rank

[
C∗ A∗C∗ . . . A∗(n−1)C∗

]
= n

where A is a n × n matrix. Given a transfer function GΣ(·) of a minimal Σ, the number n is called the McMillan degree of
GΣ(·). It is well known that two minimal systems Σp =

[
Ap Bp

Cp Dp

]
and Σq =

[
Aq Bq

Cq Dq

]
having the same transfer function are

state space isomorphic in the sense that Ap = T−1 AqT , Bp = T−1Bq , Cp = CqT , and Dp = Dq for some invertible matrix T .
A non-minimal system Σ can always be reduced to some minimal system by standard linear algebra means. For these facts,
see any classical text on algebraic control theory such as [12] and [22]. Minimisation and state space isomorphism typically
changes all of the original matrices A, B, and C (that may bear resemblance to, e.g., the physical parameters of the problem)
to an unrecognisable form which diminishes the appeal of them in applications.

Definition 2. Let Σp and Σq be linear systems with m-dimensional state space.
(i) For any c ∈ R the scalar multiple of Σp is

cΣp =
[

Ap Bp

cCp cDp

]
.

(ii) The parallel sum + for Σp and Σq is

Σp + Σq =


Ap 0
0 Aq

Bp

Bq

Cp Cq Dp + Dq

 .
(iii) The cascade product ∗ for Σp and Σq is

Σp ∗ Σq =


Ap BpCq

0 Aq

BpDq

Bq

Cp DpCq DpDq

 .
If both Σp and Σq are minimal, then so are Σp + Σq and cΣp . However, the system Σp ∗ Σq can fail to be minimal

since zero/pole cancellations may take place in the product of transfer functions. Obviously, GΣp∗Σq (s) = GΣp (s)GΣq (s),
GΣp+Σq (s) = GΣp (s)+GΣq (s), and GcΣp (s) = cGΣp (s) for all but a finite number of s ∈ C. Hence, the operation in Definition 2
can be extended to any Sm by setting

c [Σ] := [cΣ] ,
[
Σp

]
+

[
Σq

]
:=

[
Σp + Σq

]
, and

[
Σp

]
∗

[
Σq

]
:=

[
Σp ∗ Σq

]
. (19)
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Proposition 8. Let m ≥ 1 and ℵm as in Definition 1. Equipped with the operations in Eq. (19), the set ℵm becomes an
associative algebra over R with unit (i.e., (ℵm,+) is a real vector space, and (ℵm,+, ∗) is a ring.)

The required properties can be checked either directly from Eq. (19) in terms of elements of equivalence classes, or by observing
the one-to-one correspondence with rational matrix-valued transfer functions known to be an algebra.

B. System diagrams and splitted signals

We proceed by splitting the m-dimensional input and the output signals of Σ =
[
A B
C D

]
. The need for such splitting arises

from the fact that we consider the system Σ represent a two-port of four-pole following [6]. Since the objective is to couple
such systems in various ways, rules for drawing system diagrams are proposed.1 It appears that much of the proofs for results
on couplings and feedbacks can be carried out simply by considering diagrams.

Σ

u1

u2

y1

y2
Σ

y1

u2

u1

y2

Σ

u1

y2

y1

u2
Σ

y1

y2

u1

u2

Fig. 1. Four equivalent diagrams describing the same system Σ =
[
A B
C D

]
associated to Eq. (5). The first of the diagrams is drawn in standard form as defined

in the text.

Standing Assumption 2. We assume that the common dimension m of the input and output signals u(·), y(·) in Eq. (5) is
even, and the signals are splitted

u(t) =
[
u1(t)
u2(t)

]
and y(t) =

[
y1(t)
y2(t)

]
where each of the signals u1(·), u2(·), y1(·), and y2(·) are column vector valued of the same dimension m/2.

The behaviour described by Eq. (5) can be illustrated in terms of system diagrams shown in Fig. 1. Each of the four signals
u1(·), u2(·), y1(·), and y2(·) in these diagrams has two mathematical properties: a signal is either (i) input or output signal, and
either (ii) top or bottom signal. That a signal is input is indicated by the arrow pointing to the frame in diagram. Otherwise,
the signal is output of the system. That a signal is top is indicated by drawing it to top row of the diagram. We say that the
diagram is in standard form when the signals u1(·), u2(·), y1(·), and y2(·) are in the same relative positions as they appear in
their dynamical Eqs. (5). The diagrams in Fig. 1 describe the same dynamical system, and the top left panel describes it in
standard form. The following coupling rule is a restriction for coupling in system diagrams: two inputs or two outputs cannot
be coupled.2

The system diagrams do not assume even the linearity of the underlying dynamical systems. Extremely complicated networks
of dynamical systems can be described in terms of system diagrams ; see, e.g., Fig 8. The parallel and cascade connections
of Definition 2 are shown in Fig. 2.

C. Fundamental operations of realisations

It appears that all couplings and feedback configurations required in this article are combinations of four elementary
transformations of the original system Σ =

[
A B
C D

]
described diagrammatically in Fig. 3. In terms of the state space representation

of the linear system Σ, these transformations are as follows:

1The rules for drawing the system diagrams differ from those used in [6] to emphasise the directions of the signals consistently with their dynamical
equations.

2In Section VI the colour (in fact, red or blue) of signals is also introduced together with the colour rule. Colour is a semantic property that describes the
underlying physics of the realisations.



9

Σp

Σq

+ u

y2

y1

y
Σq

z1

z2

y1

y2
Σp

u1

u2

Fig. 2. Parallel and cascade connections in terms of system diagrams drawn in standard form. The resulting realisations are denoted by Σp +Σq and Σp ∗Σq
with formulas given in Definition 2.

Original system

Σ

u1

u2

y1

y2

Full Inversion

FI(Σ)

u1

u2

y1

y2

Output Flip

OF (Σ)

u1

u2

y2

y1

Top Inversion

TI(Σ)

u1

u2

y1

y2

Sign Reversal

SR(Σ)

u1

u2

y1

−y2

Fig. 3. The representations of the three basic transformations of the original system Σ =
[
A B
C D

]
given in its standard diagrammatic form (top left). The

mathematical relations between the signals u1, u2, y1, and y2 in all of these systems Σ, OF(Σ), TI(Σ), and SR(Σ) are by definition the same.

(i) Full Inversion (FI) [
A B
C D

]
= Σ 7→ FI(Σ) :=

[
A − BD−1C BD−1

−D−1C D−1

]
. (20)

(ii) Output Flip (OF) [
A B[
C1
C2

] [
D1
D2

] ] = Σ 7→ OF(Σ) :=

[
A B[ 0 I

I 0
] [

C1
C2

] [ 0 I
I 0

] [
D1
D2

] ] .
(iii) Top Inversion (TI)[

A [ B1 B2 ][
C1
C2

] [
D11 D12
D21 D22

] ] = Σ 7→ TI(Σ) :=

[
A − B1D−1

11 C1 [ −B1D
−1
11 B2−B1D

−1
11 D12 ][

−D−1
11 C1

C2−D21D
−1
1 C1

] [
−D−1

11 −D−1
11 D12

−D12D
−1
11 D22−D21D

−1
11 D12

] ]
.

(iv) Sign Reversal (SR) [
A B[
C1
C2

] [
D1
D2

] ] = Σ 7→ SR(Σ) :=

[
A B[

I 0
0 −I

] [
C1
C2

] [
I 0
0 −I

] [
D1
D2

] ] .
The realisation formula for FI(Σ) is called external reciprocal transformation in Section IV-B2. It is the only one of the four
transformations that does not require the splitting of inputs to components u1, u2 or outputs to y1, y2. Observe that both FI(Σ)
and TI(Σ) are only defined for Σ for which the result is well-defined.

The compositions of these operations on realisations are denoted by ◦. Obviously, Σ = OF(OF(Σ)) = TI(TI(Σ)) = SR(SR(Σ));
i.e., OF−1 = OF, TI−1 = TI, and SR−1 = SR. Two further similar operations can be defined in terms of these, namely the
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Bottom Inversion defined as BI := TI ◦FI = FI ◦TI whose realisation formula is plainly

BI(Σ) =


A − B2D−1
22 C2

[
B1 − B2D−1

22 D21 −B2D−1
22

][
C1 − D21D−1

22 C2
−D−1

22 C2

] [
D11 − D12D−1

22 D21 −D12D−1
22

−D−1
22 D21 −D−1

22

] .
Clearly, FI = TI ◦BI = BI ◦TI. The Input Flip given by IF := FI ◦OF ◦FI has the realisation formula[

A B
C D

]
= Σ 7→ IF(Σ) :=

[
A [ B1 B2 ]

[ 0 I
I 0

]
C [ D1 D2 ]

[ 0 I
I 0

] ] .
IV. TRANSFORMATIONS OF REALISATIONS

A. Internal Cayley and reciprocal transformations

Let Σ =
[
A B
C D

]
be any continuous time system. We define for any σ > 0 the matrices

Aσ := (σ + A) (σ − A)−1 , Bσ :=
√

2σ (σ − A)−1 B,

Cσ :=
√

2σ (σ − A)−1 C, Dσ := D + C (σ − A)−1 B = GΣ(σ)
(21)

where GΣ(·) is the transfer function of Σ. The discrete time system φσ =
(
Aσ Bσ
Cσ Dσ

)
obtained this way is known as the internal

Cayley transform of Σ. The discrete time transfer function of φσ is given by Dσ(z) = Dσ + zCσ (I + zAσ)−1 Bσ , and we have
the correspondence

Dσ(z) = GΣ
(
σ

1 − z
1 + z

)
for z ∈ D. (22)

Conversely, if −1 < σ(Aσ), we have

A = −σ (I + Aσ)−1 (I − Aσ) , B =
√

2σ (I + Aσ)−1 Bσ,

C =
√

2σCσ (I + Aσ)−1 , D = Dσ − Cσ(I + Aσ)−1Bσ

since (σ − A)−1 = 1
2σ (I + Aσ). The internal Cayley transform can be interpreted as the Crank–Nicolson time discretisation

scheme (also known as Tustin’s method) as explained in [14] or as a spectral discretisation method as explained in [23], [24];
see also [15, Section 12.3]. That this time discretisation scheme respects passivity was already indicated in Proposition 7.

It remains to mention the internal reciprocal system Σ− =
[
A− B−
C− D−

]
of Σ =

[
A B
C D

]
. If the main operator A is invertible, Σ−

is defined by
A− := A−1, B− := A−1B,C− := −CA−1,

D− := GΣ(0) = D − CA−1B.
(23)

Obviously, (Σ−)− = Σ and GΣ− (s) = GΣ (1/s). The reciprocal system is studied in [25],[15, Section 12.4], and it is useful for
interchanging high and low frequency contributions in system responses when carrying out dimension reduction based on a
desired frequency passband.

B. External transformations

Four fundamental operations on state space realisations Σ were introduced in Section III-C. Three further combinations of
these operations have an essential role in feedbacks of linear dynamical systems. We proceed to introduce them next, and we
also discuss further the Full Inversion transformation in Section IV-B2.

Applications produce two variants of linear systems Σ that impose different kinds of restriction on couplings of signals:
(i) systems whose signals have two different the physical dimensions, and (ii) systems whose signals have the same physical
dimensions but different physical directions. Systems of the first kind have transfer functions that typically represent acoustical
or electric impedances or admittances. The systems of the second kind transfer energy through their inputs and outputs in
three-dimensional space. Both kinds of mathematical systems may be used to describe the same physical configuration but
requirements due to, e.g., measurement and instrumentation make different descriptions more preferable.

From now on, we add a purely semantic property to signals in system diagrams: the colour which is either red or blue.
System diagrams are always required to satisfy the following colour rule: two signals of different colour cannot be coupled.
Depending on the context, the colour of a signal may either refer to the physical dimension or the direction of energy flow
in the underlying physics. The colour rule helps keeping track of the underlying physics in the Redheffer star products in
Section VI even though mathematics itself is “colour blind”.
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Σi

v1

v2

i1

i2
Σ(R)

b1

b2

a1

a2

Fig. 4. An impedance system with two inputs and two outputs (left). A scattering system Σ(R) constructed of Σi with the resistance matrix R (right). The
relation between signals is given in Eq. (26). Colour of the signals in left panel refers to the physical dimension and in the right channel to direction of the
energy flow.

1) External Cayley transformations: Let Σi =
[
Ai Bi
Ci Di

]
be a system whose input and output spaces are m-dimensional.

Moreover, let R :=
[
R1 0
0 R2

]
be positive, invertible, m × m resistance matrix. Define now the matrices

A := Ai − Bi (Di + R)−1 Ci, B :=
√

2Bi (Di + R)−1 R1/2

C :=
√

2R1/2 (Di + R)−1 Ci, D := I − 2R1/2 (Di + R)−1 R1/2,
(24)

comprising the system Σ(R) :=
[
A B
C D

]
where it is assumed that Di + R is invertible; see Proposition 9 below. Conversely, we

have
Ai = A + B(I − D)−1C, Bi =

√
2B (I − D)−1 R1/2

Ci =
√

2R1/2 (I − D)−1 C, Di = R1/2 (I − D)−1 (I + D) R1/2.
(25)

For reasons explained in Section V, we call Σi and Σ(R) the impedance system and scattering system with coupling channel
resistance R, respectively. Observe that the discretisation parameter σ > 0 in Eq. (21) for the internal Cayley transform and
the resistance matrix R > 0 for the external Cayley transform play somewhat analogous roles.

Any choice of R > 0 is acceptable for an impedance passive system even though some values of R are more desirable than
others:

Proposition 9. If Σi =
[
Ai Bi
Ci Di

]
is an impedance passive system, then Σ(R) defined by Eq. (24) exists for all invertible R > 0.

Moreover, the feedthrough matrix D of Σ(R) satisfies 1 < σ(D).

There exists an impedance conservative Σi for which −1 ∈ σ(D) since Di = 0 is possible, and in some physically motivated
applications such as Example 1 it is even typical.

Proof. We have for all m-vectors u

2Re 〈(R + Di)u, u〉 = 〈(R + Di)u, u〉 + 〈u, (R + Di)u〉

= 2 〈Ru, u〉 +
〈
(Di + DT

i )u, u
〉
≥ 2 〈Ru, u〉 > 0

since Di + DT
i ≥ 0 by Proposition 1. Thus R + Di is an invertible m × m matrix, and the first claim follows. That 1 < σ(D)

follows from the last equation in Eq. (24). �

Denoting the input and output signals of Σi and Σ(R) in their dynamical equations (analogously with Eqs. (5)) by
[
i1
i2

]
,[ v1

v2

]
,
[ a1
a2

]
,
[
b1
b2

]
, respectively, we have the relations[

a1
a2

]
=

R−1/2
√

2

[
v1 + R1i1
v2 + R2i2

]
and

[
b1
b2

]
=

R−1/2
√

2

[
v1 − R1i1
v2 − R2i2

]
. (26)

If the physical dimension of i1 is current and v1 is voltage, then the dimension of v1 + R1i1 is voltage. It follows, for example,
that |a1 |

2 = 1
2R1
|v1 + R1i1 |2, and its dimension is thus power. The same holds for the all other signals a2, b1, b2 of the scattering

system Σ(R).
In practice, both impedance and scattering measurements are used for passive circuits. Direct impedance measurements are

impractical for, e.g, high frequency work often carried out using Vector Network Analysers (see, e.g., [26], [27, Section 12])
that are based on scattering parameters instead of voltages and currents. The external Cayley transformation with resistance
matrix R is plainly a translation of these frameworks in state space. Scattering systems Σ(R) are also directly eligible for
Redheffer star products introduced in Section VI.
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2) External reciprocal transformation: The flow inverted system Σ f =
[
A f B f

C f D f

]
of Σ =

[
A B
C D

]
is obtained by Σ f = FI(Σ)

as introduced in Section III-C. It follows that

GΣ f (s) = GΣ(s)−1 for s < σ(A − BD−1C),

and we call Σ f the external reciprocal transform of Σ. This transformation is possible if and only if the feedthrough D or,
equivalently, D f is an invertible matrix. Indeed, we observe that{

x ′(t) = Af x(t) + Bf y(t),
u(t) = Cf x(t) + D f y(t)

(27)

holds if and only if Eq. (5) holds. If the transfer function GΣ(s) is an impedance of a passive circuit, then GΣ f (s) is the
admittance of the same circuit. From purely mathematical systems theory point of view, the impedance and admittance are
completely analogous concepts. However, for some circuits, either impedance, or admittance, or even both of them may not
be realisable by a finite-dimensional system which is a restriction on how one should write the modelling equations.

We conclude that the external Cayley and the reciprocal transformations connect systems of scattering, impedance, and
admittance type without further restrictions whenever a technical assumption concerning the feedthrough matrix holds:

Proposition 10. Let Σ =
[
A B
C D

]
be a linear system and R > 0 be an invertible matrix. Then the following holds:

(i) The (impedance) system Σi =
[
Ai Bi
Ci Di

]
given by Eq. (25) and its external reciprocal transform, the (admittance) system

(Σi) f exist if and only if ±1 < σ(D).
(ii) Defining the (scattering) system Σ(R) in terms of Σi and Eqs. (24), we have Σ(R) = Σ.

(iii) The matrix D is block diagonal in the same way as R if and only if the matrix Di is block diagonal in the same way as
R.

This follows by inspection of Eq. (25) and the definition of Σ f .
3) Hybrid transformation: The two examples given in Section VIII use the external Cayley transformation to produce

physically and mathematically realistic Redheffer products. There is yet another way of transforming an impedance passive
system Σi =

[
Ai Bi
Ci Di

]
into the hybrid system Σh (see [6, Example 4.1]) so as to make the Redheffer product of two such

(otherwise compatible) systems a physically realistic feedback connection. The corresponding operation for realisations is called
the hybrid transformation, which we now introduce for the sake of completeness. The hybrid transformation is illustrated in
Fig. 5 in terms of an impedance system

Σi =


Ai

[
Bi1 Bi2

][
Ci1

Ci2

] [
Di11 Di12

Di21 Di22

] (28)

associated to differential equations {
x ′(t) = Ai x(t) + Biu(t),
y(t) = Ci x(t) + Diu(t)

(29)

with the (current) input signal u(t) =
[
i1(t) i2(t)

]T and the (voltage) output signal y(t) =
[
v1(t) v2(t)

]T .
To compute the realisation for Σh in terms of Σi , the new output component −i2 is solved from Eqs. (29) which is possible if

and only if Di22 is invertible. Then the original output component v2 becomes an input component. Straightforward computations
lead to the realisation

Σh =


Ai − Bi2 D−1

i22
Ci2

[
Bi1 − Bi2 D−1

i22
Di21 Bi2 D−1

i22

][
Ci1 − Di21 D−1

i22
Ci2

D−1
i22

Ci2

] [
Di11 − Di12 D−1

i22
Di21 Di12 D−1

i22
D−1
i22

Di21 −D−1
i22

] . (30)

Recall that the external reciprocal transform Σ f of Σi is the full flow inversion given by Eq. (20), and the transfer function
of Σ f models circuit admittance if Σi is a model for impedance. The hybrid transformation is a partial flow inversion with an
extra sign reversal. We leave it to the reader to derive the realisation formula for the inverse hybrid transformation Σh 7→ Σi .

Given Σi , both the external Cayley transform Σ(R) for R > 0 and the hybrid transform Σh can, at least in principle, be
used for computing Redheffer star products of two systems. It remains to compare these two approaches. Compared to the
external Cayley transformation, the benefit of the hybrid transformation is that a resistance matrix R is not required. The
invertibility requirement of Di22 is quite severe in physically realistic systems whereas any impedance passive Σi has an
external Cayley transform Σ(R) for any suitable resistance block matrix R > 0. In fact, the hybrid transformation is unusable
for all impedance conservative real finite-dimensional systems with two-dimensional signals as shown in Example 2. Hence,
the hybrid transformation is not further developed in this article apart from a few notes.

4) Chain transformation: It remains to introduce the last transformation of realisations, namely the chain transformation
that is introduced in [6, Eq. (4.19) in Section 4.2] for solving the H∞ control problem. The benefit of the chain transformation
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Σi

v1

v2

i1

i2
Σh

v1

−i2

i1

v2

L1

C2C1v1 v2

i1 i2 i1

i2

v1

v2

Fig. 5. An impedance system Σi (left top panel) and its hybrid transform Σh (right top panel) in diagrammatic form. A π-topology circuit defining an
impedance passive system to be used in Section VIII-A (bottom panel). In all of these diagrams, the relations between i1, i2, v1, and v2 are the same. The
positive directions of currents in the circuit diagram point always into the circuit, following the convention of Ohm’s law and contrary to the one followed in
[27]. When chaining such circuits together using the Redheffer star product, the directions of the currents in couplings must be compatible with Kirchhoff’s
laws. This is achieved by including a sign reversal for i2 in the hybrid transformation. Recall that the signal arrows in system diagrams separate system inputs
from outputs, and they are not related to directions of currents in circuit diagrams.

is that the rather complicated Redheffer star product can be represented as the simple cascade product (see Definition 2) of
chain transforms as shown in Theorem 15. We plainly define

CHAIN(Σ) := TI(OF(Σ)) for Σ =


A

[
B1 B2

][
C1
C2

] [
D11 D12
D21 D22

] (31)

whenever the invertibility conditions required by CHAIN(Σ) are satisfied. By direct computations, we get

CHAIN(Σ) =


A − B1D−1
21 C2

[
B2 − B1D−1

21 D22 B1D−1
21

][
C1 − D11D−1

21 C2
−D−1

21 C2

] [
D12 − D11D−1

21 D22 D11D−1
21

−D−1
21 D22 D−1

21

] , (32)

and, hence, CHAIN(Σ) exists if and only if D21 is invertible. Conversely, the inverse operation for chain transformation satisfies
CHAIN−1 = (TI ◦OF)−1 = OF−1 ◦TI−1 = OF ◦TI. In terms of realisations, we have

CHAIN−1(Σc) =


Ac − Bc2 D−1

c22Cc2

[
Bc2 D−1

c22 Bc1 − Bc2 D−1
c22 Dc21

][
Cc1 − Dc12 D−1

c22Cc2

−D−1
c22Cc2

] [
Dc12 D−1

c22 Dc11 − Dc12 D−1
c22 Dc21

D−1
c22 −D−1

c22 Dc21

] (33)

for

Σc =


Ac

[
Bc1 Bc2

][
Cc1

Cc2

] [
Dc11 Dc12

Dc21 Dc22

] .
As pointed out in Section IV-B3, computing Redheffer products is meaningful either for the external Cayley transform Σ(R)

for R > 0 or the hybrid transform Σh of an impedance passive Σi splitted as in Eq. (28).

Proposition 11. Let Σi given by Eq. (28) be an impedance passive system with its external Cayley transform Σ(R) for an
invertible R =

[
R1 0
0 R2

]
> 0. By Σh denote the hybrid transform of Σi (if it exists). Then the following holds:

(i) CHAIN(Σ(R)) exists if and only if Di21 is invertible.
(ii) Both Σh and CHAIN(Σh) exist if and only if both Di21 and Di22 are invertible.

Proof. Claim (i): The proof is based on the fact that any block matrix
[
α β
γ δ

]
with square blocks and invertible δ satisfies[

α β
γ δ

]−1
=

[
(α − βδ−1γ)−1 −(α − βδ−1γ)−1βδ−1

−δ−1γ(α − βδ−1γ)−1 (δ − γα−1β)−1

]
where α and both the Schur complements α − βδ−1γ and δ − γα−1β are invertible as a consequence.
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By Eq. (24), the feedthrough operator of Σ(R) is given by D = I −2R1/2 (Di + R)−1 R1/2, and we are interested in the bottom
left block, say D21, of it. Now, D21 is invertible if and only if the bottom left block of

R1/2 (Di + R)−1 R1/2 =

[
R1/2

1 0
0 R1/2

2

] [
Di11 + R1 Di12

Di21 Di22 + R2

]−1
[
R1/2

1 0
0 R1/2

2

]
(34)

is invertible. Observe that DT
i + Di ≥ 0 by impedance passivity of Σi , and R > 0 is invertible by assumption. The invertibility

of Di + R follows as in the proof of Proposition 9. Since DT
i + Di ≥ 0, we have DT

i22
+ Di22 ≥ 0, and hence also Di22 + R2 is

invertible. Since both R1/2
1 and R1/2

2 are positive invertible matrices, we only need consider the bottom left block of (Di + R)−1

in Eq. (34) which is given by
−(Di22 + R2)

−1Di21 (Di11 + R1 − Di12 (Di22 + R2)
−1Di21 )

−1

using the Schur complements. Its invertibility is equivalent with the invertibility of Di21 as claimed.
Claim (ii) is seen to hold by inspection. �

It is unfortunate that many physically motivated impedance passive systems have vanishing feedthrough operators Di = 0
making straightforward chain transformation infeasible. Both of the applications in Section VIII are of this kind.

V. PASSIVITY OF THE TRANSFORMED SYSTEMS

The external Cayley transformation is impedance/scattering passivity preserving for any value of the resistance matrix, too.

Proposition 12. Let Σ(R) =
[
A B
C D

]
and Σi =

[
Ai Bi
Ci Di

]
be linear systems that are related by Eqs. (24)–(25) where R > 0 is

invertible. Then the following are equivalent:
(i) Σi is impedance passive;

(ii) Σ(R) is scattering passive for some invertible R > 0; and
(iii) Σ(R) is scattering passive for all invertible R > 0.

The equivalences remain true if the word “passive” is replaced by “conservative”.

Proof. We prove first the implication (ii) ⇒ (i). Let R̃ > 0 be such that Σ(R̃) =
[
Ã B̃
C̃ D̃

]
is scattering passive where

Ã := Ai − Bi

(
Di + R̃

)−1 Ci, B̃ :=
√

2Bi

(
Di + R̃

)−1 R̃1/2

C̃ :=
√

2R̃1/2 (
Di + R̃

)−1 Ci, D̃ := I − 2R̃1/2 (
Di + R̃

)−1 R̃1/2.

Because the external Cayley transformation with resistance R = I maps between impedance and scattering passive systems by
[18, Theorem 5.2], the system motivated by Eq. (25) with R = I

Σi(R̃) =
[
Ãi B̃i

C̃i D̃i

]
:=

[
Ã + B̃(I − D̃)−1C̃

√
2B̃

(
I − D̃

)−1
√

2
(
I − D̃

)−1 C̃
(
I − D̃

)−1 (
I + D̃

) ]
=

[
Ai Bi R̃−1/2

R̃−1/2Ci R̃−1/2Di R̃−1/2

] (35)

is impedance passive. Hence, [
Ãi B̃i

C̃i D̃i

]
=

[
I 0
0 R̃−1/2

] [
Ai Bi

Ci Di

] [
I 0
0 R̃−1/2

]
,

and it follows from Proposition 1 that Σi is impedance passive.
That (i) ⇒ (iii) follows by reading the above given reasoning in converse direction with an arbitrary R > 0 in place of R̃.

The final implication (iii) ⇒ (ii) is trivial.
By inspection, the same arguments hold if the word “passive” is consistently replaced by the word “conservative” with the

only difference that the LMI in Proposition 1 is then satisfied as equalities. �

Proposition 13. Let Σ =
[
A B
C D

]
be a linear system. Then the following holds:

(i) If the internal reciprocal transform Σ− of Σ exists, it is impedance passive if and only if Σ is impedance passive.
(ii) If the external reciprocal transform Σ f of Σ exists, it is impedance passive if and only if Σ is impedance passive.

Both the claims remain true if the word “passive” is replaced by “conservative”.

Proof. Claim (i): Recalling Eq. (23), we have[
AT
− + A− B− − CT

−

BT
− − C− −DT

− − D−

]
=

[
A−T + A−1 A−1B + A−TCT

BT A−T + CA−1 −DT − D + BT A−TCT + CA−1B

]
.
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Considering the left hand side, we carry out the following congruence transformation:[
AT 0
BT −I

] [
A−T + A−1 A−1B + A−TCT

BT A−T + CA−1 −DT − D + BT A−TCT + CA−1B

] [
A B
0 −I

]
=

[
AT 0
BT −I

] [
A−T A + I (A−T + A−1)B − (A−1B + A−TCT )

BT A−T A + C (BT A−T + CA−1)B + DT + D − BT A−TCT − CA−1B

]
=

[
AT 0
BT −I

] [
A−T A + I A−T (B − CT )

BT A−T A + C DT + D − BT A−T (CT − B)

]
=

[
A + AT B − CT

BT (A−T A + I) − (BT A−T A + C) BT A−T (B − CT ) − DT − D + BT A−T (CT − B)

]
=

[
A + AT B − CT

BT − C −DT − D

]
.

Since
[
AT
−+A− B−−C

T
−

BT
− −C− −D

T
− −D−

]
and

[
AT+A B−CT

BT−C −DT−D

]
are simultaneously negative or vanish, the claim follows from Proposition 1.

Claim (ii): Now we need to study the block matrix[
AT
f + Af Bf − CT

f

BT
f − Cf −DT

f − D f

]
=

[
AT − CT D−T BT + A − BD−1C BD−1 + CT D−T

D−1C + D−T BT −D−T − D−1

]
by Eq. (20). It remains to figure out another congruence transformation:[

I CT

0 DT

] [
AT − CT D−T BT + A − BD−1C BD−1 + CT D−T

D−1C + D−T BT −D−T − D−1

] [
I 0
C D

]
=

[
I CT

0 DT

] [
AT + A − CT D−T BT − BD−1C + (BD−1 + CT D−T )C B + CT D−T D

D−1C + D−T BT − (D−T + D−1)C −D−T D − I

]
=

[
I CT

0 DT

] [
AT + A − CT D−T BT + CT D−TC B + CT D−T D

D−T (BT − C) −D−T D − I

]
=

[
AT + A − CT D−T (BT − C) + CT D−T (BT − C) B + CT D−T D + CT (−D−T D − I)

BT − C −D − DT

]
=

[
AT + A B − CT

BT − C −D − DT

]
.

Again,
[
AT

f
+A f B f −C

T
f

BT
f
−C f −D

T
f
−D f

]
and

[
AT+A B−CT

BT−C −DT−D

]
are simultaneously negative or vanish which completes the proof by Proposition 1.

�

If the hybrid transform Σh an impedance passive Σi exists, then Σh can be given an equivalent passivity/conservativity notion
can be characterised in terms of LMI’s as well. Similarly, the chain transforms Σc of Σh or the scattering passive Σ(R), if
they exists, can be given such equivalent passivity notions. The conservativity of chain transforms for a (lossless) scattering
conservative systems is treated in [6, Chapter 4.4] in terms of J-losslessness. Since the mathematical formulations of these
variants is immaterial for the purpose of this article, we leave the details for an interested reader.

L1

C2C1v1 v2

i1 i2

Fig. 6. A lossless π-topology circuit for Example 1, consisting of two capacitances C1,C2, and one inductance L1.

There are elementary physically motivated examples where, e.g., the conditions of Proposition 13 are not satisfied.

Example 1. The governing equations for the LC circuit shown in Fig. 6 are

p1 − p2 = L2 (i1 − i3)′ , p1 =
1

C1

∫ t

0
i3dτ, and p2 =

1
C3

∫ t

0
(i1 + i2 − i3) dτ. (36)
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By algebraic manipulations, these signals satisfy

p′1 = pa, C1p′a − i′1 =
p2 − p1

L1
, C2p′2 = i1 + i2 − C1pa (37)

where pa := p′1. Using the scattering type of signals given in Eq. (26), we get (after carrying out a similarity transformation

in the state space) the scattering conservative model Σ(R) =
[
A B
C D

]
for any positive R :=

[
R1 0
0 R2

]
where

A :=


− 1

R1C1
1√
L1C1

0
− 1√

L1C1
0 1√

L1C2
0 − 1√

L1C2
− 1

R2C2

 , B :=


√

2
R1C1

0
0 0
0

√
2

R2C2

 ,
C := BT , and D := −I. The corresponding impedance system Σi =

[
Ai Bi
Ci Di

]
can be produced by the inverse external Cayley

transformation of Eq. (25) with Di = 0. The system Σi is impedance conservative by Proposition 1, and Σ(R) is then scattering
conservative by Proposition 12. This is all of the good news that there are about this example.

The internal reciprocal transform of Σi , given by Eq. (23) for Σ(R) instead of Σi , does not exists since Ai given by Eq. (25)
is not invertible. The external reciprocal transform of Σi , namely the admittance system given by the FI operation Eq. (20),
does not exists since Di is not invertible. Neither does the hybrid system, given by Eq. (30), exist since (Di)22 = 0 is not
invertible.

Furthermore, the transform CHAIN(Σ(R)) does not exists since D21 = 0. Both the internal and external reciprocal transforms
of Σ(R) exist.

It is instructive to observe that even more general scattering conservative systems with two-dimensional signals can never
be transformed to hybrid form assuming that their impedance descriptions are possible to begin with.

Example 2. Let Σ =
[
A B
C D

]
be a scattering conservative system with m = 2. Such systems (with real matrices) are characterised

by the equations
A + AT = −CTC = −BBT , DT D = DDT = I,

BT = −DTC, C = −DBT .
(38)

see, e.g., [21, Proposition 1.4]. Then the feedthrough matrix D ∈ R2×2 is an orthogonal matrix which is always of one of the
following two types:

Either S =
[
ρ τ
τ −ρ

]
(reflection) or Q =

[
ρ −τ
τ ρ

]
(pure rotation)

where ρ2 + τ2 = 1, det(S) = −1 (with eigenvalues ±1), and det(Q) = 1 (with complex conjugate eigenvalues unless τ = 0).
Thus, the matrix D has two possibilities: namely,{

det(D) = −1 ⇒ I − D is not invertible; or
det(D) = 1 ⇒ I − D is invertible if and only if ρ ∈ [−1, 1).

Recalling Eq. (25), we may produce the impedance system Σi =
[
Ai Bi
Ci Di

]
by the inverse external Cayley transformation only if

det(D) = 1 but ρ ∈ [−1, 1). In this case, Di satisfies

Di = (I − D)−1(I + D) =
τ

1 − ρ

[
0 −1
1 0

]
. (39)

(Without loss of generality, we have set R = I in Eq. (25).) For ρ ∈ (−1, 1), the element (Di)22 = 0 is not invertible (hence, the
hybrid transform of Σi does not exist) even though Di is invertible and the admittance system Σ f exists since τ , 0. Moreover,
even CHAIN(Σ) exists for ρ ∈ (−1, 1).

Observe that Example 1 is the special case of Eq. (39) where ρ = −1 and τ = 0.

Based on Examples 1 and 2, impedance conservative systems Σi in finite dimension may not allow external transformations
other than the external Cayley transformation Σ(R). Even Σ(R) may fail the condition required for defining Redheffer products.
A more desirable subclass of impedance passive systems is characterised as follows:

Definition 3. An impedance passive Σi =
[
Ai Bi
Ci Di

]
is properly impedance passive if the matrix DT

i + Di ≥ 0 is invertible.

Obviously, the impedance conservative systems, denoted by Σi , described in Examples 1 and 2 are impedance passive but
not properly so. The external Cayley and reciprocal transforms of a properly impedance passive system have a nice description:
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Theorem 14. Let Σi =
[
Ai Bi
Ci Di

]
be an impedance passive system whose external Cayley transform Σ(R) =

[
A B
C D

]
is given by

Eq. (24) where R > 0 is invertible. Then the following conditions are equivalent:
(i) Σi is properly impedance passive;

(ii) Σ(R) is scattering passive, and the matrix I − DT D is invertible and positive;
(iii) Σ(R) is scattering passive, ‖D‖ < 1, and σ(D) ⊂ D := {z ∈ C : |z | < 1} holds;
(iv) Σi is properly impedance passive, and its feedthrough matrix Di is invertible; and
(v) the external reciprocal transform of Σi exists, and it is properly impedance passive.

By Claim (iii) and Propositions 5 and 12, an impedance conservative system cannot be properly impedance passive.

Proof. (i)⇔ (ii): By Proposition (12), Σi is impedance passive if and only if Σ(R) is scattering passive. To verify the equivalence,
only the feedthrough matrices Di and D remains to be considered. By Proposition 9, the matrix (I − D)−1 and its transpose
(I − DT )−1 exist. From Eq. (25) we see that R−1/2DiR−1/2 = (I − D)−1 (I + D) = I + 2D (I − D)−1 = 2 (I − D)−1 − I. Thus

R−1/2
(
DT
i + Di

)
R−1/2 = 2

(
(I − DT )−1 + (I − D)−1 − I

)
= 2(I − DT )−1 [

(I − D) + (I − DT ) − (I − DT )(I − D)
]
(I − D)−1

= 2(I − DT )−1 [
2I − D − DT − (I − D − DT + DT D)

]
(I − D)−1

= 2(I − DT )−1 [
I − DT D

]
(I − D)−1.

(40)

Since the invertibility and positivity of DT
i + Di is equivalent with that of I − DT D, the equivalence follows.

(ii) ⇒ (iii): We have 1 < σ(D) by Proposition 9 and I − DT D ≥ 0 for any scattering passive Σ(R). If I − DT D is invertible
and nonnegative, the we have ‖u‖ > ‖Du‖ for all u , 0. Since D operates in a finite-dimensional space where the unit ball is
compact, we have ‖D‖ < 1 and hence σ(D) ⊂ D.

(iii) ⇒ (iv): Again, Σi is impedance passive if and only if Σ(R) is scattering passive. Since, in particular, ±1 < σ(D) holds,
the invertibility of Di follows from the last equation in (25). That DT

i + Di is invertible follows now from Eq. (40).
(iv) ⇒ (v): The external reciprocal transform (Σi) f exists by claim (ii) and Proposition 10, and its feedthrough matrix is

D−1
i . The system (Σi) f is impedance passive by claim (ii) of Proposition 13. Also, the matrix DT

i is invertible, and we have
D−Ti +D−1

i = D−Ti
(
DT
i + Di

)
D−1
i where DT

i +Di is invertible by assumption. Thus D−Ti +D−1
i is invertible, and (Σi) f properly

is impedance passive.
(iv) ⇒ (i): Trivial.
(v) ⇒ (iv): Since (Σi) f exists, Di is invertible. As the original system satisfies Σi =

(
(Σi) f

)
f
, the claim follows from the

already proved implication (iv) ⇒ (v). �

VI. REDHEFFER STAR PRODUCT

We proceed to study two-directional feedback couplings. We allow external inputs and outputs in addition to those that
are internal to the feedback loop. The fundamental structure of such couplings for systems Σp and Σq is the Redheffer star
product Σp ? Σq . We will ultimately produce a realisation formula for Σp ? Σq but we first consider it plainly as a feedback
configuration shown in Fig. 7. Starting from impedance passive systems, both the scattering systems in Section IV-B1 and the

Σp

Σq

y1

y2

u1

u2

ỹ1

ỹ2

ũ1

ũ2

Σp

Σq

y1

y2

u1

u2

ũ1

ỹ2

ỹ1

ũ2

Fig. 7. The feedback configuration describing the Redheffer star product Σp ?Σq of systems Σp and Σq diagrammatically drawn in the standard form (left)
and an equivalent representation (right). If the systems Σp and Σq are considered as scattering system, the red signals refer to the right going energy wave,
and the blue signals refer to the left going energy wave. If the systems are of hybrid form, the colour separates between current and voltage signals.

hybrid systems in Section IV-B3 are eligible for Redheffer star products with other systems of the same kind. We have, in
essence, two ways to treat the same feedback connection. The hybrid transformation requires an extra invertibility condition
whereas any impedance passive system can be externally Cayley transformed without such restrictions.3

3Even then, the hybrid transformation could well be preferable to external Cayley transformation in some particular application.
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However, there are additional requirement on systems Σp and Σq to be suitable for forming the feedback system Σp ? Σq .
Firstly, the signal pairs (u2, ỹ1) and (ũ1, y2) in Fig. 7 must be of compatible mathematical and physical dimensions. The latter
is here reflected by the semantic requirement that the colours of signals in couplings in Fig 7 are not allowed to mix. Also,
the feedback loop in Fig. 7 may fail to be well-posed in the sense that it cannot be described by any finite-dimensional state
space system at all; see Definition 4 below.

The feedback connection in Fig. 7 alone does not uniquely define a state space for Σp ? Σq . Following [6, Chapter 4], it is
sometimes possible to compute one state space realisation for Σp?Σq by reducing it to the cascade product of chain transformed
systems; see Definition 2, Section IV-B4, and the following state space variant of [6, Eqs. (4.7)–(4.8) in Section 4.1]:

Theorem 15. Let

Σp =


Ap

[
Bp1 Bp2

][
Cp1

Cp2

] [
Dp11 Dp12

Dp21 Dp22

] and Σq =


Aq

[
Bq1 Bq2

][
Cq1

Cq2

] [
Dq11 Dq12

Dq21 Dq22

] (41)

be systems whose signals in Fig. 7 are (dimensionally) feasible for the Redheffer star product Σp ? Σq . Assume further that
the matrices

Dp21, Dq21, and ∆1 := I − Dp22 Dq11 (42)

are invertible.
(i) The chain transforms CHAIN(Σp) and CHAIN(Σq) defined in Eq. (31) exist.

(ii) There exists a state space realisation, denoted by Σp ? Σq , such that CHAIN(Σp ? Σq) exists and satisfies

CHAIN
(
Σp ? Σq

)
= CHAIN(Σp) ∗ CHAIN(Σq) (43)

holds where ∗ denotes the cascade product of realisations.
(iii) The input and output signals of Σp ? Σq have the same relations as the external signals

[ u1
ũ2

]
and

[ y1
ỹ2

]
in Fig. 7.

Proof. Claim (i) follows from the invertibility of Dp21 and Dq21 ; see Eq. (32).
Claim (ii): We see from Eqs. (32)–(33) that the cascade product system CHAIN(Σp) ∗ CHAIN(Σq) is inverse chain trans-

formable. Considering the feedthrough matrices of CHAIN(Σp) and CHAIN(Σq), we get for the feedthrough of CHAIN(Σp) ∗
CHAIN(Σq) the expression [

Dp12 − Dp11 D−1
p21 Dp22 Dp11 D−1

p21
−D−1

p21 Dp22 D−1
p21

] [
Dq12 − Dq11 D−1

q21 Dq22 Dq11 D−1
q21

−D−1
q21 Dq22 D−1

q21

]
=

[
∗ ∗

∗ D−1
p21

(
I − Dp22 Dq11

)
D−1
q21

]
=

[
∗ ∗

∗ D−1
p21∆1D−1

q21

]
where the asterisks denote irrelevant entries. By assumptions, the bottom right block is invertible, and this is enough by Eq. (33)
to prove the existence of Σ such that CHAIN (Σ) = CHAIN(Σp) ∗ CHAIN(Σq).

Since Claim (iii) concerns only the signals of the feedback system, it would be an unnecessary complication to verify it in
terms of state space realisations. Instead, the proof is indicated in terms of system diagrams in Fig. 7 and 8 by reading them
from left to right, and from top to bottom. The transformations and the rules of system diagrams given in Section III are used
together with the definition CHAIN = TI ◦OF. �

OF (Σp) OF (Σq)

u1
y2 = ũ1 ỹ2

y1 u2 = ỹ1
ũ2

TI(OF (Σp)) TI(OF (Σq))

u1
y2 = ũ1 ỹ2

y1 u2 = ỹ1
ũ2

CHAIN(Σp) ∗ CHAIN(Σq)

ỹ2

ũ2

u1

y1
CHAIN(Σp ? Σq)

ỹ2

ũ2

u1

y1

OF (Σp ? Σq)

ỹ2

ũ2

u1

y1
Σp ? Σq

u1

ũ2

y1

ỹ2

Fig. 8. Equivalent system diagrams involving OF and TI operators and their composition CHAIN = TI ◦OF of Section III-C. The middle row represents
Claim (ii) of Theorem 15. Together with the diagrams in Fig. 7, these constitute the proof of Claim (iii) of Theorem 15 since the same relations between
signals u1, u2, y1, y2, ũ1, ũ2, ỹ1, and ỹ2 in all of them.
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It remains to present a state space formula for Σp ? Σq . Defining Σp and Σq by Eq. (41) and assuming that the matrices
Eq. (42) together with ∆2 := I − Dq11 Dp22 are invertible, we get from Eq. (32) and Eq. (43) the expression

Σp ? Σq =


[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
[
C11 C12
C21 C22

] [
D11 D12
D21 D22

] (44)

where the component block matrices are given by[
A11 A12
A21 A22

]
:=

[
Ap + Bp2∆

−1
2 Dq11Cp2 Bp2∆

−1
2 Cq1

Bq1∆
−1
1 Cp2 Aq + Bq1∆

−1
1 Dp22Cq1

]
[
B11 B12
B21 B22

]
:=

[
Bp1 + Bp2∆

−1
2 Dq11 Dp21 Bp2∆

−1
2 Dq12

Bq1∆
−1
1 Dp21 Bq2 + Bq1∆

−1
1 Dp22 Dq12

]
[
C11 C12
C21 C22

]
:=

[
Cp1 + Dp12∆

−1
2 Dq11Cp2 Dp12∆

−1
2 Cq1

Dq21∆
−1
1 Cp2 Cq2 + Dq21∆

−1
1 Dp22Cq1

]
[
D11 D12
D21 D22

]
:=

[
Dp11 + Dp12∆

−1
2 Dq11 Dp21 Dp12∆

−1
2 Dq12

Dq21∆
−1
1 Dp21 Dq22 + Dq21∆

−1
1 Dp22 Dq12

]
.

(45)

Observe that ∆−1
2 Dq11 = Dq11∆

−1
1 and ∆−1

1 Dp22 = Dp22∆
−1
2 if both ∆1 and ∆2 are invertible. This amounts to some non-uniqueness

in how Eqs. (45) can be written.

Remark 1. It is worth noting that for two systems Σp and Σq with (block) diagonal feedthroughs (consistent with Standing As-
sumption 2), also Σp ? Σq inherits the same (block) diagonality.

The first observation on Eq. (45) is that the formulas are well-defined even if the matrices Dp21 and Dq21 were not invertible.
These invertibility assumptions are only required for computing the realisations CHAIN(Σp) and CHAIN(Σq) which is, in fact,
not necessary for describing the Redheffer feedback connection itself. Conversely, even if both CHAIN(Σp) and CHAIN(Σq)
did exists, the existence of the linear system Σp ? Σq is not always guaranteed through Eqs. (44)–(45) since the invertibility
of ∆1 and ∆2 = I − Dq11 Dp22 is, in addition, required.

Definition 4. The feedback loop in Fig. 7 is well-posed if both of the matrices ∆1 = I − Dp22 Dq11 and ∆2 = I − Dq11 Dp22 in
Eq. (42) are invertible.

It is clear from Eq. (44)–(45) that the mappings from the external inputs (u1, ũ2) to external outputs (y1, ỹ2) in Fig. 7 are
well-posed (in the sense that their relation can be represented by a transfer function of a finite-dimensional linear system) for
invertible ∆1 and ∆2. We may add external perturbations to the feedback loop by setting u2 = ỹ1 + v2 and ũ1 = y2 + ṽ1, and
read the internal outputs ỹ1 and y2. Even now the mapping (u1, v2, ṽ1, ũ2) 7→ (y1, y2, ỹ1, ỹ2) is similarly well-posed for invertible
∆1 and ∆2.

We need economical conditions to check the well-posedness of the feedback loop.

Lemma 16. Make the same assumption and use the same notation as in Theorem 15. Necessary conditions for the well-
posedness of the feedback loop in Fig. 7 are that

(i) the matrices Dp22 and Dq11 satisfy
Dp22

 + Dq11

 < 2; or
(ii) one of the matrices ∆1 and ∆2 is invertible.

Proof. Claim (i) follows because both of the matrices are contractive, and at least one of them strictly so. Thus
Dp22 Dq11

 < 1
and

Dq11 Dp22

 < 1 implying the invertibility of ∆1 and ∆2 by the usual Neumann series argument.
Claim (ii) follows by showing that ∆1 is invertible if and only if ∆2 is invertible. Assume that the square matrix ∆1 is not

invertible, i.e., ∆1u = u − Dp22 Dq11u = 0 for some u , 0. Thus u = Dp22 Dq11u, and it follows that v := Dq11u , 0. Now
v = Dq11 Dp22 Dq11u = Dq11 Dp22v and hence ∆2v = 0. We have shown that ker (∆1) , {0} if and only if ker (∆2) , {0} which
completes the proof. �

Proposition 17. Let Σp and Σq be two scattering passive [conservative] systems such that the feedback loop in Fig. 7 is well-
posed. Then the Redheffer star product Σp ? Σq given by Eqs. (44)– (45) is a scattering passive [respectively, conservative]
system.

Proof. Let
[ u1
ũ2

]
be a twice continuously differentiable input signal and

[
xp0
xq0

]
an initial state of suitable dimensions for Σp?Σq .

It can be seen by a fairly long computation that the Redheffer star product in Eqs. (44)–(45) is so defined that the output
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signals y1, ỹ2 and the state trajectories xp, xq in the dynamical equations
x ′p(t)[
y1(t)
y2(t)

] = Σp


xp(t)[
u1(t)
u2(t)

] and


x ′q(t)[
ỹ1(t)
ỹ2(t)

] = Σq


xq(t)[
ũ1(t)
ũ2(t)

] for t > 0

with the initial conditions xp(0) = xp0 , xq(0) = xq0 and coupling equations u2 = ỹ1, ũ1 = y2 in Fig. 7 are equivalent with the
dynamical equations 

[
x ′p(t)
x ′q(t)

]
[
y1(t)
ỹ2(t)

]  = Σp ? Σq

[
xp(t)
xq(t)

]
[
u1(t)
ũ2(t)

]  for t > 0

with the initial condition
[
xp (0)
xq (0)

]
=

[
xp0
xq0

]
. Since both Σp and Σq are assumed to be scattering passive, their integrated energy

inequalities xp(T)
2
−

xp0

2
≤

∫ T

0

(
‖u1(t)‖2 + ‖u2(t)‖2 − ‖y1(t)‖2 − ‖y2(t)‖2

)
dt andxq(T)

2
−

xq0

2
≤

∫ T

0

(
‖ũ1(t)‖2 + ‖ũ2(t)‖2 − ‖ ỹ1(t)‖2 − ‖ ỹ2(t)‖2

)
dt

hold for all T ; see Eq. (12). Adding these inequalities and using the coupling equations to cancel out the internal signals gives[xp(T)
xq(T)

]2
−

[xp0

xq0

]2
≤

∫ T

0

([u1(t)
ũ2(t)

]2
−

[y1(t)
ỹ2(t)

]2
)

dt

which proves passivity. The proof for conservativity follows by replacing all inequalities in proof with equalities. �

Properly impedance passive systems can now be treated through their external Cayley transforms.

Theorem 18. Let Σp,i and Σq,i be impedance passive systems such that the signals are (dimensionally) compatible as shown in
Fig. 7. Assume that at least one of systems Σp,i and Σq,i is properly impedance passive. Define the external Cayley transformed
scattering passive systems

Σp := Σp,i(Rp) and Σq := Σq,i(Rq)

where Rp =
[
Rp,1 0

0 Rp,2

]
, Rq =

[
Rq,1 0

0 Rq,2

]
satisfying Rp,2 = Rq,1 are invertible, positive resistance matrices. Then the following

holds:
(i) The internal feedback loop in Fig. 7 is well-posed, and the Redheffer star product Σp?Σq given by Eqs. (44)–(45) exists.

(ii) There exists an impedance passive system Σ′i whose external Cayley transform satisfies Σ′(Rp,q) = Σp ?Σq with Rp,q :=[
Rp,1 0

0 Rq,2

]
.

Proof. We write Σp =
[
Ap Bp

Cp Dp

]
and Σq =

[
Aq Bq

Cq Dq

]
where

Dp =

[
Dp11 Dp12

Dp21 Dp22

]
and Dq =

[
Dq11 Dq12

Dq21 Dq22

]
.

To fix notions, we assume that Σp,i properly impedance passive.
Claim (i): We have

Dp

 < 1 by Theorem 14 and
Dq

 ≤ 1 by passivity. The claim follow from claim (i) of Lemma 16.
Claim (ii): Considering the feedthrough operator D :=

[
D11 D12
D21 D22

]
of Σp ? Σq in Eq. (45), we see that D

[ u1
ũ2

]
=

[ y1
ỹ2

]
is

equivalent with [
y1
y2

]
= Dp

[
u1
u2

]
,

[
ỹ1
ỹ2

]
= Dq

[
ũ1
ũ2

]
, u2 = ỹ1 and ũ1 = y2 (46)

following the feedback configuration of Fig. 7. For contradiction, assume that I − D is not invertible. Then we must have
D

[ u1
ũ2

]
=

[ u1
ũ2

]
for some non-vanishing vector

[ u1
ũ2

]
. This together with Eq. (46) gives[

u1
ũ1

]
= Dp

[
u1
u2

]
, and

[
u2
ũ2

]
= Dq

[
ũ1
ũ2

]
. (47)

Since Σp,i is properly impedance passive, Theorem 14 implies that
Dp

 < 1. Since Σq,i is impedance passive, the system Σq
is scattering passive satisfying

Dq

 ≤ 1. Thus, Eq. (47) implies

‖u1‖
2 + ‖ũ1‖

2 < ‖u1‖
2 + ‖u2‖

2 and ‖u2‖
2 + ‖ũ2‖

2 ≤ ‖ũ1‖
2 + ‖ũ2‖

2 .
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Hence ‖ũ1‖
2 < ‖u2‖

2 and ‖u2‖
2 ≤ ‖ũ1‖

2 which is impossible. We conclude that I −D is invertible, and Σp?Σq is an external
Cayley transform of some Σ′i by Eq. (25). Moreover, the system Σp ? Σq is scattering passive by Proposition 17, and the
impedance passivity of Σ′i follows from Proposition 12. �

VII. REGULARISATION

In finite dimensions, an impedance conservative system Σi =
[
Ai Bi
Ci Di

]
is characterised by

Ai + AT
i = 0, BT

i = Ci, and Di + DT
i = 0

by Proposition 1. Because Di does not appear in the first two equations, the system Σ′ :=
[
Ai Bi
Ci 0

]
is impedance conservative

if Σi is. A circuit theory example satisfying Di = 0 is provided in Section 1 below. Thus, the invertibility of Di , or any of its
parts in splitting Di =

[
Di11 Di12
Di21 Di22

]
, is not a generic property of impedance conservative systems. Unfortunately, some kind of

invertibility is required for computing the external reciprocal transform (Σi) f by Eq. (20), hybrid transform Σh by Eq. (30), or
the chain transform of Σh or Σ(R) where Σ(R) is the external Cayley transform of Σi; see Proposition 11. Even though Σ(R)
exists and is scattering passive for any impedance passive Σi and R > 0, the Redheffer product of two such systems may fail
to be defined unless the conditions of Lemma 16 are satisfied. Indeed, if Di = 0 and Σ(R) =

[
A B
C D

]
, then D = −I by Eqs. (24)

which is an ingredient of a non-well-posed feedback loop.
To compute feedback systems consisting of general impedance passive systems Σi , one could take one of these approaches:
(i) The external Cayley transform Σ(R) of Σi is regularised so as to make the Redheffer star products of such similar systems

feasible while preserving scattering passivity.
(ii) The system Σi is regularised in a way that preserves impedance passivity, so that the hybrid transform Σh and the

Redheffer star products of such similar systems are feasible.
Both of these approaches can be taken by using a shift and invert procedure on Σi . The first step is the replacement of
Di by Di + εI for some, purely resistive perturbation ε > 0. Clearly Σi(ε) :=

[
Ai Bi
Ci Di+εI

]
is properly impedance passive if

Σi is impedance passive by Proposition 1. The second inversion step may be any of the following: (i) the external Cayley
transformation, (ii) the hybrid transformation, or even (iii) the external reciprocal transformation, depending on what kind of
system is desirable for modelling purposes. In this article, we concentrate on the external Cayley transformation of Σi(ε), given
by

Σ(R, ε) =
[
Ai − Bi (Di + εI + R)−1 Ci

√
2Bi (Di + εI + R)−1 R1/2

√
2R1/2 (Di + εI + R)−1 Ci I − 2R1/2 (Di + εI + R)−1 R1/2

]
. (48)

By Theorem 18, the Redheffer star product Σp ? Σ(R, ε) is well-defined for all ε > 0 and scattering passive systems Σp such
that the feedback loop in Fig. 7 is possible with Σq = Σ(R, ε).

Remark 2. We have limε→0+ Σ(R, ε) = Σ(R) from Eq. (48) where Σ(R) is the external Cayley transform of Σi .4 However, it is
not as straightforward to make sense of the limit object

lim
ε→0+

(
Σp ? Σ(R, ε)

)
(49)

for the reason that the natural limit candidate Σp ? Σ(R) may not be well-defined by Eqs. (44)–(45). In this case, the matrix
elements of Σp ? Σ(R, ε) contain nonnegative powers of 1/ε whose effect on the transfer function of Σp ? Σ(R, ε) may be
vanishing as ε → 0+. There does not seem to exist an universal method for describing the limit object in Eq. (49) if the
feedback loop of Fig. 7 is not well-posed without regularisation. However, one special case is treated in Section VIII-A.

It is worth noting that Eqs. (45) simplify considerably if Di is (block) diagonal following the splitting of Standing Assump-
tion 2. So as to the system given by Example 1, we get the scattering passive realisation

Σ(R, ε) =




−1

C1(R1+ε)
1√

L1C1
0

−1√
L1C1

0 1√
L1C2

0 1√
L1C2

−1
C2(R2+ε)



√

2
(R1+ε)C1

0
0 0
0

√
2

(R2+ε)C2

[ √
2

(R1+ε)C1
0 0

0 0
√

2
(R2+ε)C2

] [
1− 2R1

R1+ε
0

0 1− 2R2
R2+ε

]


for ε > 0 (50)

where R =
[
R1 0
0 R2

]
. We see from this example that the regularisation by shift-and-invert procedure does not make the scattering

system chain transformable if the original system is not chain transformable.

4When taking a limit of finite-dimensional systems, we use any of the equivalent matrix norms for the block matrix representing the system.
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L

C2C1 C2 C1

LΣp Σq
L

C3C1

L

C1

Σp ? Σq

Fig. 9. Coupling of two π-topology circuits whose state space realisations Σp and Σq are derived in Example 1 in scattering form (top panel). When the
circuits are coupled corresponding formally to the Redheffer star product Σp?Σq , the two parallel capacitors of value C2 can be regarded as a single capacitor
of value C3 = 2C2 (bottom panel).

VIII. APPLICATIONS

We proceed to give two applications that illuminate the use of realisation techniques for model synthesis. The first application
concerns the state space modelling of a passive Butterworth lowpass filter by chaining the LC circuits described in Example 1;
see also [13, Section 13.2.5]. The second, more comprehensive application is the one considered in the introduction: an acoustic
transmission line, described by the Webster’s PDE (1), is coupled to a load that is modelled by an irrational impedance given
in Eq. (4).

A. Passive Butterworth filter in Cauer π-topology

The impedance transfer function of the lossless circuit shown in Fig. 9 is given by

Z(s) =
1

s
(
LC1s2 + 1

) (
LC1C3s2 + 2C1 + C3

) ·
·

[
L2C1C3s4 + L(2C1 + C3)s2 + 1 1

1 L2C1C3s4 + L(2C1 + C3)s2 + 1

]
.

(51)

The resonant frequencies of the circuit are given by

f1 =
1

2π
√

LC1
and f2 =

1
2π
√

L̃C̃
where L̃ :=

L
2

and C̃ :=
2C1C3

2C1 + C3
. (52)

Since the π-topology circuit of Example 1 is not properly impedance passive, it is not possible to compute the realisation for
the impedance in Eq. (51) by using Theorem 18 without regularisation. However, for any R =

[
R0 0
0 R0

]
and ε > 0, the Redheffer

star product realisation of the two shift-and-invert regularised component systems takes the form5 Σp(R, ε)?Σq(R, ε) =
[
Aε Bε
Cε Dε

]
where Dε =

[
1− 2

ε+1 0
0 1− 2

ε+1

]
, Cε = BT

ε =


1

ε+R0

√
2R0
C1

0 0 0 0 0

0 0 0 0 0 1
ε+R0

√
2R0
C1

 , and

Aε =



− 1
R0C1(ε+1)

1√
LC1

0 0 0 0
− 1√

LC1
0 1√

LC2
0 0 0

0 − 1√
LC2

− 1
2C2ε

1
2C2ε

0 0
0 0 1

2C2ε
− 1

2C2ε
1√
LC2

0
0 0 0 − 1√

LC2
0 1√

LC1
0 0 0 0 − 1√

LC1
− 1

R0C1(ε+1)


. (53)

There is a rank one symmetric matrix A′ := limη→0 ηAη ≤ 0 with eigenvalues σ(A′) := {0,−1/C2}, satisfying

Aε = A(ε) +
A′

ε
where A(0) = lim

ε→0
A(ε) exists.

The realisation Σε := Σp(R, ε) ? Σq(R, ε) has a six dimensional state space, yet the circuit in Fig. 9 (bottom panel) has
only five components. The capacitor C3 = 2C2 in the circuit of Fig. 9 consists of the two parallel capacitors of capacitance
C2, each of which corresponds to a separate degree-of-freedom in the state space. Alternatively, one may think that there is

5Observe that we could use different R for the component systems Σp (R1, ε) and Σq (R2, ε). However, when producing the feedback loop, the coupled
scattering signals must have been defined using the same resistance matrix block, i.e., R1 =

[
R11 0

0 R12

]
and R2 =

[
R21 0

0 R22

]
with R12 = R21.
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Fig. 10. Reflection and transmission parameters s11 (left panel) and s21 (right panel) of the 5th order Butterworth low pass filter having the topology of
Fig. 9. For the cut-off frequency 1 MHz the approximate component values C1 = 2.2 nF, C3 = 6.8 nF, and L = 14µH correspond to matching the RL = 50Ω
load at both ends. The different versions of s11, s21 have been computed from the Redheffer realisations Σp (R, ε)? Σq (R, ε) following Eq. (50), using the
regularisation parameter value ε = 1 nΩ and R = R0

[ 1 0
0 1

]
with R0/Ω ∈ {20, 25, . . . , 50, . . . 75, 80}. The curve corresponding R0 = RL show least ripple in

the passband of s21 as expected.

an extra pole in the transfer function of Σε due to the non-vanishing regularisation parameter ε. In the physically realistic
coupling without regularisation (i.e., at the limit ε → 0+), transfer of charge may take place between each capacitor of value
C2, resulting in infinite currents in internal conductors of zero resistance inside C3. We are dealing with a non-well-posed, yet
completely virtual feedback connection in Fig. 9 (bottom panel).

As a first step towards a more economic model, it is possible to give a simplified version of Σε for ε ≈ 0. Observing that

D0 = −I, C0 = BT
0 =

[ √
2

R0C1
0 0 0 0

0 0 0 0
√

2
R0C1

]
, and defining A′ε := A(0) + A′

ε , we first get the realisation Σ′ε :=
[
A′ε B0
C0 D0

]
that is

scattering passive for all ε > 0. Indeed, all other conditions of scattering conservativity in Proposition 5 are satisfied, except
for the Liapunov equation that only holds as the inequality

A′ε +
(
A′ε

)∗
+ C∗0C0 = A(0) + A(0)∗ +

2A′

ε
+ C∗0C0 =

2A′

ε
≤ 0.

The matrix A′ε has two real negative eigenvalues λ1(ε) and λ2(ε) satisfying limε→0+ λ1(ε) = −∞ and limε→0+ λ2(ε) = 0.
Also, λ1(ε) ≈ 1/εC2 as ε ≈ 0 which is a spurious, transient, and singular (i.e., proportional to 1/ε) mode, associated with the
regularisation of the non-well-posed feedback loop.

We proceed to entirely removing the spurious eigenvalue λ1(ε) by a structure preserving dimension reduction. Define

Ã :=



− 1
R0C1

1√
LC1

0 0 0
− 1√

LC1
0 1√

LC3
0 0

0 − 1√
LC3

0 1√
LC3

0
0 0 − 1√

LC3
0 1√

LC1
0 0 0 − 1√

LC1
− 1

R0C1


where C3 = 2C2,

and D̃ := −I, C̃ := B̃T :=

[ √
2

R0C1
0 0 0 0

0 0 0 0
√

2
R0C1

]
. Then Σ̃ :=

[
Ã B̃
C̃ D̃

]
is a minimal scattering realisation for the Butterworth filter

described by Fig. 9, and it can be obtained by first applying the unitary similarity transformation on A′ε that diagonalises the
2 × 2 singular block there. Finally, the row and column corresponding to the singular mode λ1(ε) are plainly removed from
the original realisation Σ′ε to obtain Σ̃ without 1/ε dependency.

B. Acoustic waveguide terminated to an irrational impedance

We complete the article by modelling an acoustic waveguide that is coupled from one end to an semi-infinite exterior
space, modelled by a piston model. Before forming the required Redheffer product in terms of finite-dimensional systems, the
acoustic part is spatially discretised by FEM, and the load is rationally approximated by the Löwner’s interpolation method.
As an application of this, we compute acoustic signals and frequency responses using anatomic data, acquired by Magnetic
Resonance Imaging (MRI) from a test subject during production of vowel [i] as explained in [28].
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χ0 χ1 χ2 χ3

0 L

χnχn−1. . .

Fig. 11. The notation related to the subdivision Ch in the special case of an equidistant division of [0, L].

1) Formulating the FEM system: Given continuous and strictly positive functions k1, k2 : [0, L] → R, consider the partial
differential equation for φ = φ(t, χ) satisfying

Üφ =
1

k1(χ)

∂

∂ χ

(
k2(χ)

∂φ

∂ χ

)
for all χ ∈ (0, L) and t ≥ 0 (54)

where Üφ := ∂2φ
∂t2 with the boundary conditions

−k2(0)
∂φ

∂ χ
(t, 0) = i1(t) and k2(L)

∂φ

∂ χ
(t, L) = i2(t) for every t ≥ 0 (55)

for continuously differentiable input signals i1 and i2. The variational formulation of the problem is as follows: Find φ = φ(t, χ),
satisfying

φ ∈ C2([0,∞); L2(0, L)) ∩ C1([0,∞); H1(0, L)) ∩ C([0,∞); L2(0, L))

such that
∂2

∂t2

∫ L

0
k1(χ)φ(t, χ)v(χ) dχ +

∫ L

0
k2(χ)

∂φ

∂ χ
(t, χ)

∂v

∂ χ
(χ) dχ

= k2(L)
∂φ

∂ χ
(t, L)v(L) − k2(0)

∂φ

∂ χ
(t, 0)v(0)

= v(L)i2(t) + v(0)i1(t)

(56)

for all test functions v ∈ H1(0, L).
Cubic Hermite Finite Element spaces: Treating the boundary condition such as Eqs. (55)–(56), it is necessary to keep track

of spatial derivatives. Instead of the usual piecewise linear approximations, a convenient way of doing this is using a Hermitian
Finite Element (FE) space where these derivatives appear as degrees-of-freedom; see, e.g., [29], [30, Section 2.2.3].

Let Ch be a finite family of open, disjoint intervals (χi−1, χi) with whose union is dense in (0, L). The notation and
enumeration of the nodes χi of Ch is given in Fig. 11. We make use of the finite-dimensional subspace

Vh := {w ∈ H2(0, L) : w |K ∈ P3(K) for all K ∈ Ch}

where P3(K) denotes the space of polynomials of degree ≤ 3 restricted to K ⊂ R. The Galerkin method applied Eq. (56) gives
the following formulation: Find φh ∈ C2([0,∞); Vh) such that

∂2

∂t2

∫ L

0
k1φhvh dχ +

∫ L

0
k2
∂φh
∂ χ

∂vh
∂ χ

dχ = vh(L)i2 + vh(0)i1 (57)

for all vh ∈ Vh . We proceed to construct an explicit basis for Vh so as to express Eq. (57) in matrix form.
The local basis functions (see Fig. 12) corresponding to each interval (χi−1, χi) ∈ Ch for i = 1, . . . , n, and they are given by

ϕ1
i (χ) = 2`i(χ)3 − 3`i(χ)2 + 1, ϕ2

i (χ) = −2`i(χ)3 + 3`i(χ)2,
ϕ3
i (χ) = (`i(χ)

3 − 2`i(χ)2 + `i(χ))(χi − χi−1), ϕ4
i (χ) = (`i(χ)

3 − `i(χ)
2)(χi − χi−1)

where `i(χ) := χ−χi−1
χi−χi−1

. There are two families of global basis functions corresponding to each interior node χj for 0 < j < n,
and they are given by

ψ1
j (χ) =


ϕ2
j (χ), if χ ∈ (χj−1, χj],

ϕ1
j (χ), if χ ∈ (χj, χj+1),

0, otherwise,

ψ2
j (χ) =


ϕ4
j (χ), if χ ∈ (χj−1, χj],

ϕ3
j (x), if χ ∈ (χj, χj+1),

0, otherwise.

We enumerate these two families as

ψk(χ) =

{
ψ1
k
(χ), if k ∈ {1, . . . , n − 1},

ψ2
k−n
(χ), if k ∈ {n + 1, . . . , 2n − 1}

(58)

which is a basis for Vh ∩ H1
0 (0, L). However, solutions φ of Eq. (54) are expected to have non-trivial Dirichlet traces φ(t, 0)
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Fig. 12. The local basis functions ϕk
i , k ∈ {1, 2, 3, 4}, on the interval (χi−1, χi ) = (0, 1) (left panel). The global basis functions ψk

j , k ∈ {1, 2}, corresponding
to the node χj = 0.5 (right panel). In the picture, χj−1 = 0 and x j+1 = 1.

and φ(t, L). Hence, we need to add the functions

ψ0 = ϕ
1
1 and ψn = ϕ

2
n (59)

corresponding the end point nodes χ0 = 0 and χn = L, to obtain the basis {ψk}k=0,1,...,2n−1 for Vh; see Fig. 12.
System of linear equations: Since φh(t, ·) ∈ Vh for all t ≥ 0, we get using the basis of Eqs. (58)–(59)

φh(χ, t) =
2n−1∑
k=0

wk(t)ψk(χ) for x ∈ [0, L] and t ≥ 0

where wk are some twice differentiable functions. Writing the coefficient vector w :=
[
w0 . . . w2n−1

]T
∈ R2n and the input

matrix

F :=
[
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0

]T
∈ R2n×2,

since ϕ1
1(0) = ϕ

2
n(L) = 1; here nonzero entries are in the first and (n + 1)st positions. Eq. (57) takes the form

M Üw(t) + Kw(t) = F
[
i1(t)
i2(t)

]
, (60)

where M =
[
mi j

]
, K =

[
ki j

]
∈ R2n×2n are given by

mi j =

∫ L

0
k1ψjψi dχ and ki j =

∫ L

0
k2
∂ψj

∂ χ

∂ψi
∂ χ

dχ.

The matrix M is always invertible since the functions ψj are a basis, but the matrix K is never invertible since constant
functions are in Vh . Defining the extended state trajectory x = [ wÛw ], we get following Corollary 3 the equivalent form

Ûx(t) = A(1)i x(t) + B(1)i

[
i1(t) i2(t)

]T where

A(1)i :=
[

0 K1/2M−1/2

−M−1/2K1/2 0

]
and B(1)i :=

[
0

M−1/2F

]
.

(61)

When modelling acoustics of a variable diameter tube, we have k1(χ) = A(χ)/c2 and k2(χ) = A(χ) where c is the speed
of sound and A(χ) is the cross-sectional area at χ ∈ [0, L]. The physical dimension of the input signals i1 and i2 is volume
velocity (given in m3/s). To read out the sound pressures (given in Pa) p1 and p2 from the system at the ends χ = 0 and
χ = L , we define [

p1(t) p2(t)
]T
= C(1)i x(t) with C(1)i := ρ

[
0 FT M−1/2] (62)

where the dimension of the zero matrix is 2 × 2n, and ρ > 0 denotes the density of the medium. The system defined by

Eqs. (61)–(62) is henceforth denoted by Σ(1)i =

[
A
(1)
i B

(1)
i

C
(1)
i 0

]
. Note that Σi is not yet an impedance conservative system, but

impedance conservativity is achieved by dividing ρ in Eq. (62) evenly between B(1)i and C(1)i as ρ1/2, see Theorem 2.
2) Löwner interpolation of the exterior space impedance: We proceed to construct a low-order model for the acoustics of

an unbounded half space in R3 as seen from a circular aperture of radius a > 0. Following the work of Morse and Ingard [1],
the acoustic impedance Z(s) from the piston model is given above in Eq. (4). This function satisfies Z(s) = Z(s) and, hence,
Z(R) ⊂ R for physical reasons. We proceed in two steps: the function Z(s) is first approximated by a rational interpolant using
Löwner’s method, and then its McMillan degree is further reduced by the Singular Value Decomposition (SVD).

For a given integer m > 0, we use two sets of interpolation points {µi}, {λj} ⊂ C−, each having m elements with {µi}∩{λj} =
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∅. The interpolation data from Z(s) is represented in terms of two m × m matrices L =
[
li j

]
and M =

[
mi j

]
given by

li j =
Z(µi) − Z(λj)

µi − λj
and mi j =

µiZ(µi) − λjZ(λj)
µi − λj

for 1 ≤ i, j ≤ m where 2m is the total number of interpolation points. Following [31, Chapter 1], we call L and M Löwner
and shifted Löwner matrices, respectively. Defining the vectors

b :=
[
Z(µ1) Z(µ2) . . . Z(µm)

]T and c :=
[
Z(λ1) Z(λ2) . . . Z(λm)

]T
we get the linear dynamical system, say Σ̃p , given in descriptor form as{

Lv′(t) = Mv(t) − bi(t)
p(t) = cT v(t)

(63)

whose transfer function is a rational interpolant of values of Z(s) at points {µi} ∪ {λj} if the matrix pencil (L,M) is regular;
see [31, Theorem 1.9], [13, Section 4.5.2].

To avoid complex arithmetics as in [32, Appendix A.2] while respecting the property Z(s) = Z(s), we use interpolation
points satisfying in addition to {µi} ∩ {λj} = ∅ and {µi} ∪ {λj} ⊂ C \ R the following conditions:

L is invertible; µi , µj and λi , λj for i , j; and

µj+1 = µj and λj+1 = λj for odd j = 1, 3, . . .m − 1
(64)

where m even. An unitary change of coordinates given in [32, Appendix A.2] makes it possible to replace matrices L,M and
vectors b, c in Eq. (63) by their purely real counterparts that are henceforth denoted by the same symbols.

After the construction of real matrices L and M for Eq. (63), the adverse effects of oversampling are removed by reducing
their order via SVD following [32, Section 4.2]. More precisely, we write L = USVT , and pick left and right singular vectors
corresponding to the k largest singular values into m × k isometric matrices Uk and Vk with k � m. The reduced order k × k

matrices Lk = UT
k
LVk , Mk = UT

k
MVk , and the vectors B(2)i := UT

k
b, C(2)i := cVT

k
define the system Σ(2)i =

[
A
(2)
i B

(2)
i

C̃
(2)
i 0

]
through

the dimension reduced equations derived from Eq. (63){
z′(t) = A(2)i z(t) + B(2)i i(t)
p(t) = C(2)i z(t)

(65)

where A(2)i := L−1
k
Mk . The external reciprocal transform of Σ(2)i is a realisation related to the Dirichlet-to-Neumann map that

is used in resonance computations of coupled Helmholtz systems; see, e.g., [33].
3) Modelling vowel production: To define the system Σ(i)i , the cross-section areas A(χ) for χ ∈ [0, L] are obtained from

vocal tract (VT) geometry of a test subject while producing the vowel sound [i] through the process described in [34], [35]. The
length of the VT centreline is L = 19.6 cm, and χ = 0, L denote the vocal folds and mouth opening positions, respectively. For
spatial discretisation, the equidistant subdivision of [0, L] into n = 99 subintervals is used, and A(χ) is considered piecewise
linear on this subdivision. The waveguide system Σ(1)i is produced as described above, and the dimension of its state space is
4n = 396.

The mouth opening area is used as the parameter A0 = A(L) for the exterior space impedance Z(s) in Eq. (4). A finite-
dimensional system is produced by sampling Z(s) at 2m = 300 interpolation points {µi} ∪ {λj} from inside the square
W = {s ∈ C : 0 ≤ |Re s | , |Im s | ≤ 3 · 105 rad/s} while obeying the restrictions of Eq. (64). Some of the interpolation points
are near the zeroes of Z(s), and the rest are uniformly distributed random points. The frequencies under 48 kHz get accurately
modelled in this way. The low-order exterior space model Σ(2)i of McMillan degree k = 16 is obtained by dimension reduction,
and the estimated relative error of its transfer function, compared to |Z(s)|, is under 3 · 10−6 kg/m4 s in the frequency interval
of interest. The values c = 343 m/s and ρ = 1.225 kg/m3 are used for both Σ(1)i and Σ(2)i .

To obtain the composite system Σi =
[
Ai Bi
Ci 0

]
(where Ai is a 412 × 412 matrix) and its time discretisation, the following

steps are taken:
(i) The impedance passive systems Σ(1)i and Σ(2)i are regularised and externally Cayley transformed to obtain the scattering

systems Σ(1)(R) and Σ(2)(R2, ε) with R =
[
R1 0
0 R2

]
and R1 = R2 = 1.1 · 106 kg/m4 s. The choice of the regularisation

parameter ε > 0 is discussed below.6

(ii) The Redheffer star product Σ(R1, ε) := Σ(1)(R) ? Σ(2)(R2, ε) is computed to obtain the composite system in scattering
form. The system Σ(R1, ε) is a scattering passive model for the VT where mouth at χ = L is coupled to the exterior

6Note that only one of the systems Σ(1)(R) and Σ(2)(R2, ε) need be regularised for using the Redheffer star product. Applying the regularisation to the
exterior space model Σ(2)i has the additional advantage for introducing physically realistic resistive effects at the mouth opening. For this reason, we do not
let ε → 0 as in Section VIII-A but choose it optimally based on measured formant data.
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Fig. 13. Liljencrantz–Fant (LF) glottal flow excitation waveform at fo = 120 Hz (left panel, bottom) together with the acoustic pressure waveforms at mouth
(middle) and at vocal folds (top) positions as computed from the model. The envelopes of the power spectral densities (using LF excitation) at mouth and
vocal folds positions (middle panel). Amplitude frequency responses (using constant amplitude logarithmic sweep) as the input (left panel). All the responses
are given without absolute scale.

space, and a virtual control surface right above vocal folds at χ = 0 is coupled to a measurement port of load impedance
R1.

(iii) The inverse external Cayley transformation (with R = R1) is used to obtain the impedance system Σi(ε) from Σ(R1, ε).
(iv) For time domain simulations by Crank-Nicolson method, the internal Cayley transform φσ(ε) =

(
Aσ Bσ
Cσ Dσ

)
of Σi(ε)

is computed using σ = 88 200, corresponding the time discretisation parameter value h = 22.7µs and the sampling
frequency 44 100 Hz.

The transfer function Gi(s) = Ci (s − Ai)
−1 Bi of Σi(ε) is the computed total acoustic impedance of VT and the exterior space

as seen at the vocal folds position. The resonant frequencies fR1, fR2, . . ., corresponding to the lowest vocal tract formants
F1, F2, . . ., are obtained from the eigenvalues λ ∈ σ(Ai) by Rj = Im λj/2π.

The temporally discretised system φσ(ε) is discrete time impedance passive by Proposition 7. To simulate the vowel
production in time domain, it needs to be excited by a flow signal waveform, using it as the input to the difference equations
Eq. (13) at the sampling frequency of 44 100 Hz. A suitable flow waveform is provided by the Liljencrantz–Fant (LF) pulse
train at fo = 120 Hz together with the synthesised signals shown in Fig. 13 (left panel) (see also [36, Fig. 4] estimated spectra
(middle and right panel). Burg’s method (with model order 100) is used for the data in the middle panel, and an envelope
detector is used in the right panel. The spectral tilt over the frequency interval [200 Hz, 6.4 kHz] is ≈ −6.5 dB/octave in Fig. 13
(middle panel). Considering that losses to VT walls and the glottal opening at χ = 0 have been neglected, this value is
reasonably consistent with the values −9.0 . . . − 9.2 dB/octave that were given in [37, Table 2 on p.15]

We complete this work by discussing the accuracy of the low order model Σi(ε) in terms of measured data. The lowest resonant
frequencies, computed from the eigenvalues of Ai , are fR1 = 338 Hz, fR2 = 1845 Hz, and fR3 = 2693 Hz using ε = 0.194 Z0
(with Z0 = ρc/A0) as the regularisation parameter for Σ(2)i that is tuned to match fR1 . . . fR3 to the measured target data
F1 . . . F3 optimally. As the target data, we use the experimentally obtained formant values F1 . . . F3 from vowel samples that
were measured from the same test subject in anechoic chamber. These values are F1 = 340 ± 25 Hz, F2 = 1840 ± 40 Hz, and
F3 = 2490±60 Hz as can be read off from [37, Fig. 9]. Obviously, the computed resonant frequencies fR2, fR3 match the peaks
in spectrograms in Fig. 13, extracted from the simulated sound pressure signals at vocal folds and mouth positions.

It is pointed out in [38] that not all formants can always be observed in the power spectrum due to confounding factors; such
formant is called latent. Since there is an underlying resonance fR1 corresponding to formant F1 which is, hence, classified
as latent in Fig. 13. Moreover, the model produces no extra spurious resonances under 3 kHz, i.e., resonant frequencies not
accounted for by the measurement data on vocal tract replicas [39, Male_i_sweep.pdf in Repository III], nor the speech
measurements during MRI [37, Fig. 9], except for those that appear on the negative real axis. Note that ε can be understood
as additional acoustic series resistance to the exterior space model, and it appears that essentially only fR1 is sensitive to ε.

Discrepancies between fRj and Fj can be computed from

Dj = 12 log2
fRj

Fj
in semitones for j = 1, 2, 3,

yielding D1 = −0.1, D2 = 0.05, and D3 = 1.4, respectively. A computational experiment based on 3D Helmholtz equation was
reported in [28, Section 5.2] where the same 3D MRI data was used but the exterior space model was trivial: the homogeneous
Dirichlet boundary condition was imposed at the mouth opening. The resulting discrepancies from the computational data of
[28, Fig. 7] are D̃1 = −7.5, D̃2 = 2.0, and D̃3 = 2.9 (accounting for the different speed of sound c = 350 m/s used in [28].

We conclude that the proposed 1D acoustics model with only 412 degrees-of-freedom and an improved treatment of exterior
space acoustics produces much better match for F1 . . . F3 from experimental data, compared to the 3D Helmholtz FEM solver
with ≈ 105 degrees-of-freedom.



28

IX. CONCLUSIONS

Finite-dimensional realisations have been proposed as a framework for practical numerical modelling of interconnected
passive systems. The use of the machinery was illuminated by examples from circuit synthesis and acoustic waveguides.

Under some restrictive assumptions, up to six equivalent reformulations were given in Section IV for the same underlying
dynamical system. It is in the nature of things that each of the reformulations make some aspects quite transparent while
obscuring other aspects. For example, to write electro-mechanical model equations in continuous time, one is likely to prefer
impedance passive formulations in terms of external current and voltage signals satisfying Kirchhoff’s laws in couplings.
Continuous time scattering passivity deals with power transmission and reflection parameters satisfying the conservation of
energy at the component interfaces, and it is particularly useful for modelling feedback systems as in Section VI. In itself,
the characterisation of passivity is easiest for continuous time in impedance setting and for discrete time in scattering setting;
see Propositions 1 and 6. It is desirable that spatial discretisation preserves the passivity of the original system, and for some
Finite Element discretisations this follows from Theorem 2. Finally, temporal discretisation by Tustin’s method, i.e., the internal
Cayley transformation, leads to scattering or impedance passive discrete time systems as given in Proposition 7.

A few words about generalisations that are peripheral to the point of this article. Propositions 1, 5, 6, and 7 are special cases
of known infinite-dimensional results on system nodes. Internal transformations in Section IV-A have natural generalisations to
system nodes in [15], but the external transformations in Section IV-B require more care because they refer to the feedthrough
operator D in an essential way. However, there is a straightforward generalisation to the state-linear systems (see [40]) where A
generates a contraction semigroup on a Hilbert state space X , with B,C∗ ∈ L(U; X) and D ∈ L(U) for the signal Hilbert space
U. Considering Propositions 9 and 12, the external Cayley transform (with R = I) is given in [18, Theorem 5.2] for well-posed
(but not necessarily regular) impedance passive system nodes. Furthermore, Propositions 12 and 13 can be generalised to
system nodes by usual techniques whereas only a weaker form of Theorem 14 holds even in the case of regular systems where
D may be non-compact. Theorems 15 and 18 generalise to state-linear system with finite-dimensional U, but both ∆1 and ∆2
need be assumed invertible if dim U = ∞. A higher generalisation of the Redheffer star product is, perhaps, easiest obtained
by translating to discrete time by the internal Cayley transformation. Finally, Standing Assumption 2 is mostly a matter of
convenience, and the signal dimensions in splittings need not generally be the same with the notable exception of the chain
transformation where the invertibility of D21 is crucial.

Even though state space control is often motivated by the ease of numerical linear algebra compared to the treatment
of rational transfer functions, the appeal of realisation techniques is diminished by their inherent numerical burden in large
problems. Simulation in discrete time by the internal Cayley transform of Σ =

[
A B
C D

]
can always be arranged so that the

matrices in Eq. (21) need not be computed but, instead, a linear problem is solved at each time step. For long time simulations,
one would prefer pre-computing the matrices in Eq. (21) if storage is not a concern. So as to external transformations and the
Redheffer star product, some resolvents of the feedthrough matrix D of Σ, or its parts, need be computed at the expense of loss
of sparseness. This is a trivial requirement for the examples in Section VIII but increasingly expensive when, e.g., coupling
together 3D acoustic subsystems at a common 2D boundary interface. Thus, some form of economy should be exercised in the
spatial discretisation of the interfaces connecting the component systems. Alternatively, a special kind of dimension reduction
could be used at the interface degrees-of-freedom as was done in [41] for the coupled symmetric eigenvalue problem.
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