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Abstract Let T be a bounded linear operator in a Banach space, with σ(T ) = {1}. In 1983,
Esterle–Berkani’ s conjecture was proposed for the decay of differences (I − T ) T n as follows: Either

lim infn→∞ (n + 1)‖ (I − T ) T n‖ ≥ 1/e
or T = I. We prove this claim and discuss some of its consequences.
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1 Introduction
Let T ∈ L (X), a bounded linear operator in a (complex) Banach space X. The following result
by Esterle holds, see [1, Corollary 9.5]:
Proposition 1 Let T ∈ L (X) satisfy σ(T ) = {1}. If T "= I then lim infn→∞(n+ 1)‖(I −T )
Tn‖ ≥ 1

96 .

Berkani improved the lower bound to 1/12, and he conjectured that the best lower bound
is 1/e, see [2]. That 1/e has a special role in related estimates can also be seen in the following
remark by Nevanlinna, see [3, Theorem 4.5.1]:
Proposition 2 Assume that there exists {λj} ⊂ σ(T ) such that |λj | < 1 and |λj | → 1 as
j → ∞. Then lim supn→∞ (n + 1)‖(I − T )Tn‖ ≥ 1

e .

The constant 1/e also appears in the well-known “continuous time” case [4, Theorem 10.3.6].
In this paper, we show that Berkani’s and Esterle’s conjecture is right in the sense that

Proposition 1 holds with 1/96 replaced by 1/e. We use a related but more careful analysis that
has already been used in [1], involving the univalent functions gn(z) = z(1 − z)n. Also we give
another variant of Proposition 2 without restrictions on σ(T ).

All of these results were first presented in [5] (Yuan, 2002) with somewhat longer proofs.
That 1/e in Proposition 1 is a valid lower bound, is also proved in [6] (Kalton, Montgomery-
Smith, Oleszkiewicz, and Tomilov, 2002) by quite different means. Both of the existing ap-
proaches can be generalized to a larger class of results, but these respective classes are different
(and we shall not discuss these generalizations here). An example is given in [6], indicating that
the constant 1/e is the best possible. The construction is a modification of an example given
in [7] (Lyubich, 2001).

2 Estimating lim infn→∞ (n + 1)‖(I − T )Tn‖
Denote D(R) := {z ∈ C : |z| < R}, and let g : D(R) → C be an analytic function satisfying
g(0) = 0 and g′(0) "= 0. Then there exists a maximal radius Ru, 0 < Ru ≤ R, such that g is
a univalent (i.e. an injective analytic) function on the disk D(Ru). It is then easy to see that
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the image of g (D(Ru)) contains an open disc, centered at origin. Let 0 < c < ∞ be the largest
radius such that D(c) ⊂ g (D(Ru)). Then there exists an analytic function f : D(c) → D(Ru)
such that

(g ◦ f)(z) := g(f(z)) = z for all z ∈ D(c). (1)

We denote the spectral radius of L ∈ L (X) by ρ(L). If ρ(L) = 0, then L is called quasi-
nilpotent. With these notations, we can prove the following proposition:
Proposition 3 Let g : D(R) → C be an analytic function such that g(0) = 0 and g′(0) "= 0.
Let the constants c and Ru be as above. Then, for all 0 < η < 1,

inf {‖g(L)‖ : L ∈ L (X), ρ(L) = 0, ‖L‖ ≥ Ruη(1 − η)−1} ≥ ηc.

Proof The proof is carried out by showing that the set
{L ∈ L (X) : ρ(L) = 0, ‖g(L)‖ < ηc, ‖L‖ ≥ Ruη(1 − η)−1}

is empty for all 0 < η < 1. This is achieved by using the Cauchy estimates for the function
f defined in (1). Denote the power series representations by f(z) =

∑
j≥1 ajzj and g(z) =∑

j≥1 bjzj . Clearly f : D(c) → D(Ru) means that sup|z|<c |f(z)| ≤ Ru, and then the Cauchy
estimates give |aj |rj ≤ Ru for each r < c and j ≥ 1. Letting r → c−, we get that |aj |cj ≤ Ru

for all j ≥ 1.
Let L ∈ L (X) be an arbitrary quasi-nilpotent operator. Then g(L) is quasi-nilpotent by

the spectral mapping theorem, as g(0) = 0. Similarly Y := f(g(L)) is also quasi-nilpotent. Now
let 0 < η < 1, and assume that ‖g(L)‖ < ηc. It now follows from the above Cauchy estimates
that

‖Y ‖ ≤
∑

j≥1

|aj | · ‖g(L)‖j <
∑

j≥1

|aj |cj · ηj ≤ Ruη(1 − η)−1;

hence ‖Y ‖ < Ruη(1 − η)−1.
We proceed to show that Y = L. Since Y is quasi-nilpotent, g(Y ) is well-defined. By the

associativity g(Y ) = g[f(g(L))] = g(f [g(L)]) = (g ◦ f)(g(L)) = g(L) because (g ◦ f)(z) = z for
any z ∈ D(c). As g(0) = 0, it follows that σ(g(L)) = {0} ⊂ D(c). Using the power series of g,
we get

0 = g(Y ) − g(L) =
∑

j≥1

bjY
j −

∑

j≥1

bjL
j (2)

= (Y − L)
(

b1I +
∑

j≥2

bj

[
Y j−1 + Y j−2L + · · · + Lj−1

] )

= (Y − L)(b1I + U),
where b1 = g′(0) "= 0 and U :=

∑
j≥2 bj

[
Y j−1 + Y j−2L + · · · + Lj−1

]
.

We know that Y = f(g(L)) is quasi-nilpotent, and it is actually a function of L. We now
consider function h defined in D(Ru) as follows:

h(z) :=
∑

j≥2

bj

[
f(g(z))j−1 + f(g(z))j−2z + · · · + zj−1

]
.

Then h(z) is analytic in D(Ru) and h(0) = 0. So h(L) is well defined and U = h(L). Since both
L and Y are quasi-nilpotent, we see that U is quasi-nilpotent. Therefore b1I + U is boundedly
invertible. This together with (2) implies that Y = L. Hence, for any 0 < η < 1 and any
quasi-nilpotent L ∈ L (X), ‖g(L)‖ < ηc ⇒ ‖L‖ = ‖Y ‖ < Ruη(1− η)−1. This proves the claim.

A somewhat analogous result to the previous proposition is [6, Theorem 4.5]. We proceed
to study the functions

gn(z) := (1 − z)nz for n ≥ 1, (3)

that also made their appearance in Esterle’s original argument. We shall make use of the
constants R(n)

u and c(n) defined as follows:
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1) R(n)
u > 0 is the largest radius of an open disc D(R(n)

u ) such that gn(z) is univalent in
D(R(n)

u );
2) c(n) > 0 is the largest radius of an open disc D(c(n)) such that D(c(n)) ⊂ gn(D(0, R(n)

u )).
Because g′n(z) = (1 − z)n−1(1 − (n + 1)z) and hence g′n(1/(n + 1)) = 0, it follows, by the

elementary function theory, that R(n)
u ≤ 1/(n + 1). The next proposition shows that equality

holds here.
Proposition 4 The functions gn(z) = (1 − z)nz are univalent in the disc D(1/(n + 1)) for
all n ≥ 1.
Proof Let z = reiφ ∈ C, where 0 ≤ r < 1/(n + 1) and φ ∈ R. Now gn(z) = R(r,φ) eiΦ(r,φ),
where rφ =

√
1 − 2r cos(φ) + r2, Φ(r,φ) = φ − n arcsin(r sin(φ)/rφ) and R(r,φ) = r · rn

φ ;
note that arcsin : [−1, 1] → [−π/2,π/2] is the inverse function of sin : [−π/2,π/2] → [−1, 1].
Mapping φ ,→ Φ(r,φ) is injective on R, because, by writing t = cos(φ),

∂Φ(r,φ)
∂φ

=
(
1 − (n + 2)rt + (n + 1)r2

) (
1 − 2rt + r2

)−1

≥
(
1 − (n + 2)r + (n + 1)r2

) (
1 − 2rt + r2

)−1

= (1 − r) (1 − (n + 1)r)
(
1 − 2rt + r2

)−1
> 0,

where the last estimate follows as r < 1/(n + 1). Notice, furthermore, that Φ(r, 2πk) = 2πk

for every k ∈ Z. Moreover, if φ is fixed then ∂R(r,φ)
∂r = ∂Φ(r,φ)

∂φ

(
1 − 2rt + r2

)n/2
> 0. Hence

r ,→ R(r,φ) is injective on [0, 1/(n + 1)), and the claim follows.
In other words, we have now proved that R(n)

u = 1/(n+1) for all n ≥ 1. The other sequence
of constants can be determined easily.
Proposition 5 The constants c(n) (as introduced earlier) satisfy c(n) = 1

n+1 (1 − 1
n+1 )n, for

all n ≥ 1.

Proof Clearly, for any fixed n, c(n) = inf
z∈∂D(R(n)

u )
|gn(z)|. Since |(1− z)nz| ≥ (1−R(n)

u )nR(n)
u ,

for all z satisfying |z| = R(n)
u , we get c(n) ≥ 1

n+1 (1− 1
n+1 )n as R(n)

u = 1/(n+1) by Proposition 4.
By choosing z = R(n)

u , we see that even the equality holds.
Now we are prepared to prove our main result. The required improvement of Proposition 1

follows by taking L = I − T in the following theorem:
Theorem 1 Let L ∈ L (X), L "= 0, be quasi-nilpotent. Then lim infn→∞ (n+1)‖(I−L)nL‖
≥ 1

e .

Proof Define the functions gn and the constants R(n)
u , c(n) as earlier. Let 0 < η < 1 be

arbitrary. Since by Proposition 4, R(n)
u η(1 − η)−1 = 1

n+1 · η(1 − η)−1 → 0 as n → ∞, there
exists N(η) < ∞, such that, for all n ≥ N(η), we have ‖L‖ ≥ R(n)

u η(1 − η)−1. By Proposition
3 (with g = gn) and Proposition 5, we have, for all n ≥ N(η),

‖(I − L)nL‖ ≥ ηc(n) = η
1

n + 1

(
1 − 1

n + 1

)n+1

.

Since limn→∞ (1 − 1
n+1 )n+1 = 1/e, we get, by letting n → ∞, lim infn→∞ (n + 1)‖(I − L)nL‖ ≥

η/e. Because 0 < η < 1 is arbitrary, the claim follows by letting η → 1.

3 Estimating lim supn→∞ (n + 1)‖(I − T )Tn‖
Theorem 2 For any T ∈ L (X), either

(i) lim supn→∞(n + 1)‖(I − T )Tn‖ ≥ 1/e; or,
(ii) lim supn→∞(n + 1)‖(I − T )Tn‖ = 0 holds.

Proof If lim supn→∞(n + 1)‖(I − T )Tn‖ = ∞ or T = I, then the claim holds. It remains to
consider the case when supn≥0(n + 1)‖(I − T )Tn‖ < ∞ and T "= I. By [3, Theorem 4.2.2],
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σ(T ) ⊂ D(1) ∪ {1}.
If 1 /∈ σ(T ), then ‖Tn‖ ≤ Mrn for some 0 ≤ r < 1, and (ii) follows. If 1 is an accumulation

point of σ(T ), then (i) holds, by Proposition 2. If 1 is an isolated point, then either σ(T ) = {1}
or there is a positive distance between 1 and σ(T ) \ {1}. If σ(T ) = {1}, then (i) holds by
Theorem 1.

To complete the proof, we can assume dist (1,σ(T ) \ {1}) > 0. There exist closed, noninter-
secting curves Γ1 and Γ2 with the following properties: Γ1 lies strictly inside the open unit disc
D(1) and it surrounds the set σ(T )\{1}; Γ2 surrounds point 1. Define the bounded spectral pro-
jections P1 and P2, together with the corresponding closed subspaces P1 := 1

2πi

∫
Γ1

(λ−T )−1dλ,

P2 := 1
2πi

∫
Γ2

(λ− T )−1dλ, X1 := P1X and X2 := P2X.
Both X1 and X2 are invariant for T , X1 ∩ X2 = {0} and X = X1 + X2. They inherit their

norms from X, and X itself is isometrically isomorphic to the exterior direct sum
X1
×
X2

, equipped

with the norm ‖[x1 x2]T ‖X1×X2 := ‖x1 + x2‖ for all x1 ∈ X1, x2 ∈ X2. Define the bounded
operators L and M by L := T |X1 ∈ L (X1) and M := T |X2 ∈ L (X2). Then T is isometrically
equivalent to the block matrix [ L 0

0 M ] :
X1
×
X2

→
X1
×
X2

, and (I − T )Tn is represented (apart from an

isometric isomorphism) by
[

(IX1−L)Ln 0
0 (IX2−M)Mn

]
. By the triangle inequality

‖(I − T )Tn‖ =
∥∥∥
[

(IX1−L)Ln 0
0 (IX2−M)Mn

]∥∥∥
L (X1×X2)

(4)

≥
∥∥∥
[

0 0
0 (IX2−M)Mn

]∥∥∥
L (X1×X2)

−
∥∥∥
[

(IX1−L)Ln 0
0 0

]∥∥∥
L (X1×X2)

= ‖(IX2 − M)Mn‖L (X2) − ‖(IX1 − L)Ln‖L (X1).

The spectra of L and M satisfy σ(L) = σ(T ) \ {1} ⊂ D(1) and σ(M) = {1}. It follows again
immediately that limn→∞ (n + 1)‖(IX1 − L)Ln‖L (X1) = 0. By Theorem 1, lim supn→∞ (n +
1)‖(IX2 − M)Mn‖L (X2) ≥ 1/e. Therefore (4) implies

lim sup
n→∞

(n + 1)‖Tn(T − 1)‖ ≥ lim sup
n→∞

(n + 1)‖(IX2 − M)Mn‖L (X2) ≥ 1/e,

and the proof is completed.
The lower bound 1/e in Theorem 2 can be reached, see [3, Example 4.5.2].
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