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1 IntrodutionIn this paper, we give suÆient and neessary onditions in Theorems 7 and8 for the onservativity of linear boundary ontrol systems. Suh systems aredesribed by di�erential equations of form8><>: _z(t) = Lz(t);Gz(t) = u(t);y(t) = Kz(t) for all t � 0: (1.1)All of the onditions in Theorems 7 and 8 are stated in terms of data given;namely the operators L, K, and G, together with the Hilbert spaes they arede�ned on. We shall give �ve PDE examples to indiate that these results arepratially appliable in onrete problems. However, our abstrat settingdoes not require any of the operators in (1.1) to be a partial di�erentialoperator.What is a (sattering) onservative linear system? By general linear sys-tems we mean system/operator nodes; see [13, 19℄ and the referenes therein,inluding the lassial works [1, 6, 7, 8, 17, 18, 20℄. We assume heneforththat the reader is familiar with suh nodes; reading [13, Setion 2℄ gives a suf-�ient bakground. A boundary ontrol system of form (1.1) always de�nesan operator node, see De�nition 1 and Setion 2 for details.Now, let S = [ A&BC&D ℄ be a system node. The (separable) Hilbert spaesU , Y , X, X1 := D(A) and X�1 := D(A�)d are de�ned as usual for systemnodes. By A : X1 ! X, B 2 L(U ;X�1), and C 2 L(X1;Y ) denote the mainoperator, input operator, and the output operator of S, respetively. Assumethat the funtions u(�) 2 C2(R+ ;U), z(�) 2 C1(R+ ;X), y(�) 2 C1(R+ ;Y )satisfy the di�erential equation assoiated to S:8<: _z(t) = A�1z(t) +Bu(t);y(t) = C&D h z(t)u(t) i for all t � 0; (1.2)see [13, Proposition 2.5℄ for details. We say that S is energy preserving iffor any (suÆiently smooth) input u(�) and any (ompatible) initial statez(0) = z0, the unique solution of (1.2) satis�es the energy balane equationddtkx(t)k2X = ku(t)k2U�ky(t)k2Y , see [13, De�nition 3.1℄. That S is onservativemeans that both S and Sd are energy preserving. Here Sd denotes the dualsystem node of S as desribed in [13, Proposition 2.3℄.This notion of onservativity is the \right one" in the sense that is a diretextension of the well-known �nite dimensional ase. Hene the de�nition ofonservativity refers diretly to Sd. Unfortunately, it is less than obvious torelate Sd to the operators appearing in (1.1) { the data of a typial boundaryontrol problem. Solving these ompliations is the purpose of this paper.Following [13℄, a onservative system node S is said to be tory (or a Juliaolligation) if Ker B = f0g and (Ran C)? = f0g. A powerful haraterisationof tory nodes is given in [13, Theorem 4.4℄. The main results of this paper {3



Theorems 3, 7 and 8 { are based on this theorem. These results are appliedto a number of PDE examples. In partiular, a fairly omplete treatment(apart from the exponential stability) of the boundary ontrolled (sattering)onservative wave equation is given.2 BakgroundWe develop the required bakground results for boundary ontrol nodes andshow their equivalene to usual operator nodes (of boundary ontrol type).We review the related Cauhy problem, too.De�nition 1. Assume that U , X and Y are separable Hilbert spaes.(i) Assume that Z is a Hilbert spae, suh that Z � X with a boundeddense inlusion. Let L 2 L(Z;X), G 2 L(Z;X) and K 2 L(Z;Y ) beoperators suh that the following onditions hold for some � 2 C + :(a) U = Ran G,(b) Ker G is dense in X,() (�� L)Ker G = X, and(d) Ker (�� L) \Ker G = f0g.Then the triple � = (L;G;K) is alled a boundary ontrol node. Thespae Z is the solution spae of �.(ii) If both � = (L;G;K) and � := (�L;K;G) are boundary ontrolnodes, then � is alled a doubly boundary ontrol node.(iii) Let S = [ A&BC&D ℄ be an operator node on spaes U , X and Y as in [13,De�nition 2.2℄. Then S is alled an operator node of boundary ontroltype (in the sense of Salamon), if �(A) \ C + 6= ;, Ker B = f0g andBU \X = f0g.The spaes U , X, and Y are alled input, state, and output spaes of both� and S, respetively.Eah boundary ontrol node de�nes a Cauhy problem through equations(1.1). The assumptions on operators L, G, and K are suh that this Cauhyproblem is \orretly posed" in a sense related to \orret posedness" foroperator nodes1 and their Cauhy problems (1.2). However, the assumptionsof De�nition 1 alone do not imply the existene of a (weak, strong) solutionz(�) of either (1.1) or (1.2) { something more involving the generation of aC0-semigroup in X is required.1In PDE appliations, heking this \orret posedness " requires ertain a priori esti-mates involving the partial di�erential operators and Sobolev spaes. The abstrat fun-tional analysis framework does not and annot take part in this. See how the elliptiregularity theory is used in Subsetion 7.4. 4



Suppose that � = (L;G;K) and S = [ A&BC&D ℄ satisfy the onditions ofDe�nition 1. It is desribed in Subsetions 2.1 and 2.2 that suh � and Sare in one-to-one orrespondene. Moreover, the two Cauhy problems (1.1)and (1.2) will then have the same solutions. This translation is essentiallythe same as given in [15, 16℄ in a di�erent notation (but, unfortunately, witha small mistake2). For an earlier and somewhat di�erent approah dealingmainly with ontrollability questions, see [4℄.2.1 Towards operator nodesWe shall now show that any boundary ontrol node � de�nes an operatornode S in the sense of [13, De�nition 2.2℄. Let us �rst make sense about themain operator A and its domain X1.Proposition 1. Let � = (L;G;K) be a boundary ontrol node on Hilbertspaes U , Z, X and Y . De�ne the spae X1 and the linear mapping A bysetting X1 := Ker G and A := LjX1 : X1 ! X:Let � 2 C + satisfy onditions () and (d) of De�nition 1. Then(i) X1 is a losed subspae of Z, and it inherits a Hilbert spae normk � kX01 from Z,(ii) A 2 L(X1;X) when X1 is given the norm k�kX01. Moreover, A : D(A) �X ! X is an unbounded, losed, densely de�ned linear operator withD(A) = X1 and � 2 �(A), and(iii) X1 is a Hilbert spae under the norm kxkX1 := k(�� A)xkX , and thisnorm k � kX1 is equivalent to norm k � kX01.Proof. Claim (i) follows beause G 2 L(Z;U), and we attak laim (ii). Forlarity, let X 01 denote the Hilbert spae Ker G equipped with k � kX01 . Firstly,D(A) is dense in X by ondition (b) of De�nition 1. To show that � 2 �(A),take any x 2 X 01. We have A 2 L(X 01;X) sinekAxkX = kLxkX � kLkL(Z;X) � kxkZ = kLkL(Z;X) � kxkX01 :Beause Z � X with a bounded inlusion, we have kxkX � CkxkZ = CkxkX01for any x 2 X 01. Hene, X 01 � X with a bounded inlusion, and it follows that� � A 2 L(X 01;X), too. By ondition () of De�nition 1, � � A : X 01 ! Xis surjetive. By ondition (d), it is injetive, too. Hene, there exists abounded inverse (� � A)�1 : X ! X 01. Beause X 01 � X with a boundedinlusion, in fat (� � A)�1 2 L(X) and � =2 �(A). In partiular, A is adensely de�ned operator on X, with domain D(A) = Ran (�� A)�1 = X1.2This mistake was independently disovered by G. Weiss and the author.5



Now the last laim (iii). Beause (� � A)�1 : X ! X 01 is a boundedbijetion with a bounded inverse, it follows thatkxkX01k(�� A)�1kL(X;X01) � k(�� A)xkX � k�� AkL(X01;X) � kxkX01 :Hene, the norm k � kX1 is equivalent to the inherited norm k � kX01.From now on, we always use the norm kxkX1 := k(��A)xkX on X1. ByX�1 denote the ompletion of X in norm kxkX�1 := k(� � A)�1xk. RegardX as a subspae of X�1 with the natural inlusion operator oming from theompletion proess. As is well known in the ontext of rigged Hilbert spaes,A : X1 ! X has a linear extension to an operator A�1 : X ! X�1 satisfyingA�1 2 L(X;X�1).Next we extrat the input operator B 2 L(U ;X�1) from �. We also showthat the norm of Z is equivalent to another norm that an easily be expressedwith the aid of A�1 and B.Proposition 2. Let � = (L;G;K) be a boundary ontrol node on Hilbertspaes U , Z, X and Y . Let X1 and A be as in Proposition 1, and let � 2 �(A)be arbitrary. Then(i) there exists a unique operator B 2 L(U ;X�1) satisfying the equationLz = (A�1jZ)z +BGz for all z 2 Z; (2.1)(ii) we have (� � A�1)�1B 2 L(U ;Z), G(� � A�1)�1B = I and Ker B =f0g,(iii) X1 \ (� � A�1)�1BU = f0g, Z = X1 _+(� � A�1)�1BU , and the normof Z is equivalent to the Hilbert spae normkzk2X1+(��A�1)�1BU = kxk2X1 + kuk2U where z = x + (�� A�1)�1Bu:(2.2)Proof. Beause G 2 L(Z;U) is surjetive, there exists a right inverse H 2L(U ;Z) suh that GH = I on all of Z. De�ne B := (L�A�1jZ)H. BeauseL 2 L(Z;X) and X � X�1 with a bounded inlusion, it follows that L 2L(Z;X�1). Beause Z � X with a bounded inlusion, A�1jZ 2 L(Z;X�1)and hene B 2 L(U ;X�1). It is lear from onstrution that BGz = (L �A�1jZ)Gz for z = Hu, u 2 U . Sine Z = Ker G _+Ran H, equation (2.1)follows.If there were two operators B1; B2 2 L(U ;X�1) satisfying (2.1) withB = B1; B2, then their di�erene would satisfy (B1 � B2)u = 0 for all u 2Ran (G) = U . Thus B is uniquely de�ned and does not depend on thepartiular hoie of the right inverse H.6



In order to prove (ii), let � 2 �(A) and u 2 U be arbitrary. We start withthe identity (�� A�1jZ)Hu� (�� L)Hu = Bu 2 X�1. Now we have (atleast formally)G (�� A�1)�1 (�� A�1jZ)Hu�G (�� A�1)�1 (�� L)Hu= G (�� A�1)�1Bu:The �rst term in the left is well-de�ned for all u 2 U . By anelling theresolvents and realling GHu = u, we get (still formally)u�G (�� A�1)�1 (�� L)Hu = G (�� A�1)�1Bu: (2.3)This time Hu 2 Z and hene (�� A)�1 (�� L)Hu 2 X1, no matter whatvalue � 2 �(A) attains. So the seond term on the left of (2.3) is well-de�ned,too, and this omputation veri�es that G (�� A�1)�1Bu is a well-de�nedelement of U .ButX1 = KerG by de�nition, and hene the identity I = G (�� A�1)�1Bfollows from (2.3). The above omputations show that (�� A�1)�1BU � Z.As (�� A�1)�1B 2 L(U ;X) and Z � X with a dense inlusion, it follows(by the ompatibility of Banah spaes Z and X) that (�� A�1)�1B 2L(U ;Z).It remains to establish laim (iii). Suppose x 2 X1 \ (� � A�1)�1BU ,x 6= 0. As X1 = Ker G, then Gx = 0. As x = (� � A�1)�1Bu for someu 6= 0, we have by laim (ii) that Gx = u 6= 0, a ontradition.For any z 2 Z, de�ne u := Gz 2 U . Then x1 := z � (� � A�1)�1Busatis�es Gx1 = Gz � G(�� A�1)�1Bu = Gz � u = 0. Hene x1 2 Ker G =X1, and trivially z = x1 + (� � A�1)�1Bu. This proves that Z � X1 +(� � A�1)�1BU . The onverse inlusion follows as we have already proved(�� A�1)�1BU � Z for laim (ii).It is lear that (2.2) de�nes another Hilbert spae norm for Z. By a shortestimation, we learn that for all z 2 Z � XkzkX � max �1; k(�� A�1)�1BkL(U ;X)� � (kx1kX1 + kukU) (2.4)where z = x1+(��A�1)�1Bu is the unique deomposition of z 2 Z aordingto Z = X1 _+(�� A�1)�1BU .It follows from (2.4) that the inlusion Z � X is bounded, when Z is giventhe norm in (2.2). It is an expliit assumption that the inlusion Z � X inbounded, with the original norm of Z. Hene, these two di�erently normedversions of Z are ompatible Banah spaes, and their norms are aordinglyequivalent.Note that the spaes X1 and (�� A�1)�1BU are orthogonal in Z, whenZ is given the norm (2.2).Proposition 3. Let � = (L;G;K) be a boundary ontrol node on Hilbertspaes U , Z, X and Y . Let the spaes X1, X�1 and operators A, A�1, B beas in Propositions 1 and 2. De�ne the vetor spaeV := f[ xu ℄ 2 [XU ℄ : A�1x +Bu 2 Xg (2.5)7



and equip it with the Hilbert spae norm[ xu ℄2V := kxk2X + kuk2U + kA�1x +Buk2X : (2.6)Then(i) V � [ ZU ℄ with a bounded inlusion,(ii) the operator C&D : V ! Y de�ned byC&D �xu� := Kx (2.7)satis�es C&D 2 L(V ;Y ), and(iii) the identity V = [ IG ℄Z holds.Proof. To prove (i), we show the following funtional analyti fat: if H1,H2, and H3 are Banah spaes, if H2 � H3 with a bounded inlusion, andif T 2 L(H1;H3) with Ran T � H2, then T 2 L(H1;H2). By the losedgraph theorem, it is enough to show that T is losed as a mapping from H1to H2. Suppose gj ! g in H1 and Tgj ! h in H2. Sine H2 � H3 with abounded inlusion, Tgj ! h in H3, too. Beause T 2 L(H1;H3), it followsthat h = Tg. Hene T is losed as required.Realling that Z � X with a bounded inlusion, laim (i) follows bysetting H1 = V , H2 = [ ZU ℄, H3 = [XU ℄, and letting T be the natural inlusionfrom V to [XU ℄. To prove (ii), estimate for [ xu ℄ 2 VC&D [ xu ℄Y = k �K 0� [ xu ℄ kY � k �K 0� kL([ZU ℄;Y ) � k [ xu ℄ k[ZU ℄� kKkL(Z;Y ) � Ck [ xu ℄ kV ;where C is the norm of the inlusion V � [ ZU ℄.To prove laim (iii), note that V := �[ xu ℄ 2 [ ZU ℄ �� A�1x + Bu 2 X	 bylaim (i) and let � 2 �(A). Now, as (� � A)�1 : X1 ! X is a boundedbijetion, we have for any [ xu ℄ 2 [ ZU ℄A�1x +Bu 2 X, (�� A)�1A�1x+ (�� A�1)�1Bu 2 X1, � x + �(�� A)�1x + (�� A�1)�1Bu 2 X1, � x + (�� A�1)�1Bu 2 X1;where the last equivalene holds sine �(� � A�1)�1x 2 X1 as x 2 Z � X.Using X1 := Ker G and G(�� A�1)�1Bu = u ompletes the proof.Now we have all the ingredients to put up an operator node of boundaryontrol type in the sense of De�nition 1:8



Theorem 1. Let � = (L;G;K) be a boundary ontrol node on Hilbert spaesU , Z, X and Y . Let the spaes X1, X�1, V and operators A, A�1, B,C&D be as in Propositions 1, 2 and 3. De�ne A&B := [A�1 B℄ jV . ThenS = [ A&BC&D ℄ is an operator node with D(S) = V = [ IG ℄Z. Moreover, S is of theboundary ontrol type in the sense that Ker B = f0g and Ran B \X = f0g.Proof. All this follows from the properties of an operator node in [13, Setion2℄, and Propositions 1, 2 and 3.2.2 Towards boundary ontrol nodesNow we shall go to the onverse diretion: we show that any operator nodeS = [ A&BC&D ℄ of boundary ontrol type de�nes an unique boundary ontrol node� = (L;G;K), see De�nition 1. In this subsetion, the spaes X1 = D(A),X�1 and the operators A 2 L(X1;X), A�1 2 L(X;X�1), B 2 L(U ;X�1) arede�ned as usual for the operator node S. Moreover, we de�neZ := X1 + (�� A�1)�1BU (2.8)for some � 2 �(A). The Hilbert spae V = D(S) is given by (2.5) and (2.6);see [13, Setion 2℄ for details.Proposition 4. Assume S = [ A&BC&D ℄ is an operator node on Hilbert spaesU , X and Y , suh that BU \X = f0g and Ker B = f0g. Then the followingholds:(i) There exists a unique linear map G 2 L(Z;U) suh that V = [ IG ℄Z.Moreover, [ IG ℄ 2 L(Z;V ), Ran G = U , and Ker G = X1.(ii) There exists a unique linear mapping K 2 L(Z;Y ) satisfying K =C&D [ IG ℄, Kx = C&D [ xu ℄ for all [ xu ℄ 2 V , and C&D = �K 0� jV .We have Ran K = Y if and only if Ran C&D = Y .(iii) The operator L : Z ! X, de�ned byLz := (A�1jZ)z +BGz for all z 2 Z;satis�es L 2 L(Z;X), (��L)Ker G = X, and Ker (��L)\Ker G =f0g for all � 2 �(A).Proof. Let us start with laim (i). Beause BU \X = f0g and Ker B = f0g,for eah z 2 Z � X there exists this time a unique u 2 U suh that A�1z +Bu 2 X. Namely, if there were two, say u1 6= u2, then B(u1�u2) 2 BU \X.Hene B(u1 � u2) = 0 and thus u1 = u2. Let us all this (well-de�ned)mapping Z 3 z 7! u 2 U by G.Suh G is learly linear, and so is [ IG ℄ : Z ! [XU ℄. It follows from thede�nition of G that [ IG ℄Z � V . Conversely, if [ xu ℄ 2 V , then A�1x+Bu 2 Xand hene x 2 Z. Then [ IG ℄ x 2 V and u = Gx by a similar uniquenessargument as given above. It now follows that [ IG ℄Z = V and that [ IG ℄ : Z !V is a bijetion, sine the operator is trivially injetive.9



We proeed to show that [ IG ℄ 2 L(Z;V ) and G 2 L(Z;U). As Z isomplete, it is enough to show that [ IG ℄ is losable. Let zj ! 0 in thenorm of Z and [ IG ℄ zj ! [ z0u0 ℄ 2 V in the norm of V . As Z � X withbounded inlusion, it follows that zj ! 0 in the norm of X. As V � [XU ℄with a bounded inlusion (see (2.5) and (2.6)), it follows that zj ! z0 inthe norm of X. Hene z0 = 0. Realling that [ 0u0 ℄ 2 V , we must haveBu0 2 BU \X = f0g. Hene, [ z0u0 ℄ = [ 00 ℄ and the losability of [ IG ℄ follows.Note that G = �0 I� jV � [ IG ℄. Beause �0 I� jV 2 L(V ;U) by a simpleestimate, it follows G 2 L(Z;U).We show next that Ran G = U . Beause S is an operator node, thereexists a xu 2 Z suh that [ xuu ℄ 2 V for every u 2 U . Indeed, take xu =(��A�1)�1Bu 2 Z and note that A�1xu+Bu = �(��A�1)�1Bu 2 Z � X.By what we have already proved above, suh xu is unique and it satis�esu = Gxu.If x 2 Ker G, then [ x0 ℄ 2 V , A�1x 2 X, and thus x 2 D(A). Conversely,let x 2 D(A). Then [ x0 ℄ 2 V , and it follows that Gx = 0 beause V = [ IG ℄Z.Now laim (i) is proved.ThatK 2 L(Z;Y ) follows from C&D 2 L(V ;Y ) and laim (i). Moreover,Ran K = Ran C&D and Kx = C&D [ xu ℄ for all [ xu ℄ 2 V follow as [ IG ℄ : Z !V is a bijetion.It remains to prove (iii). Let z 2 Z be arbitrary. Then [ zGz ℄ 2 V ,Lz = A�1z +BGz 2 X and thus L : Z ! X. Sine Z � X with a boundedinlusion, we onlude that A�1jZ 2 L(Z;X�1) and hene L 2 L(Z;X�1),too. Beause Ran L � X and X � X�1 with a bounded inlusion, weonlude that L 2 L(Z;X) using the tehnique presented in the beginningof the proof of Proposition 3.Let � 2 �(A) and x 2 Ker (�� L) \ Ker G. Clearly (�� L)Ker G = Xis equivalent to the fat that (� � A)X1 = X. Furthermore, x 2 X1 and0 = (��L)x = (��A)x = 0, whih implies x = 0. The proof is omplete.We have now proved the following theorem:Theorem 2. Assume S = [ A&BC&D ℄ is an operator node of boundary ontroltype on Hilbert spaes U , X and Y with D(S) = V . De�ne the spae Z by(2.8), and let the operators L 2 L(Z;X), G 2 L(Z;U) and K 2 L(Z;Y ) beas in Proposition 4.Then � = (L;G;K) is a boundary ontrol node (in the sense of De�nition1) on Hilbert spaes U , X and Y , with the solution spae Z.By inspeting the translation proedures of Subsetions 2.1 and 2.2, wesee that the boundary ontrol nodes � = (L;G;K) and the operator nodesS = [ A&BC&D ℄ of boundary ontrol type are in one-to-one orrespondene. Inpartiular, the solution spae Z for � is same as the spae given by (2.8) forfor the operator node S orresponding to �. For general operator nodes, wehave yet another haraterisation for the same spaeZ = X1 + (�� A�1)�1BU (2.9)= fz 2 X : 9u 2 U suh that [ xu ℄ 2 D(S)g:10



It is a haraterising property for operator nodes of boundary ontrol type thatwe an write the diret sum deomposition Z = X1 _+(�� A�1)�1 instead of(2.8). Analogously, it is true only for S of boundary ontrol type that thespae V = D(S) (given by (2.5)) an be written as in form V = [ IG ℄Z forsome operator G 2 L(Z;U).2.3 The Cauhy problemWe now solve the Cauhy problem for the formal system (1.1). This is re-dued to the orresponding Cauhy problem (1.2) system nodes, as presentedin [13, Proposition 2.5℄.Lemma 1. Assume that � = (L;G;K) is a boundary ontrol node, suhthat A = LjKer G : D(A) � X ! X is a generator of a C0-semigroup.Let u 2 C2([0;1);U) and z0 2 Z be suh that the ompatibility onditionGz0 = u(0) is satis�ed.Then the Cauhy problem (1.1) has a unique lassial solution z(�) 2C([0;1);Z) \ C1([0;1);X), suh that z(0) = z0 and y(�) 2 C([0;1);Y ).Proof. By S = [ A&BC&D ℄ denote the operator node that is related to � as inTheorems 1 and 2. By V and Z denote the two ommon Hilbert spaes for� and S that have been desribed in Subsetions 2.1 and 2.2. Sine A isthe generator of a C0-semigroup it follows from [13, Proposition 2.5℄ thatthere exists a unique z(�) 2 C1([0;1);X) \ C2([0;1);X�1) suh that (1.2)holds and h z(�)u(�) i 2 C([0;1);V ). Sine V � [ ZU ℄ with a bounded inlusionby Proposition 3, it follows that z(�) 2 C([0;1);Z) and u(t) = Gz(t) for allt � 0. Sine L = A�1jZ +BG, (1.2) implies that for all t � 0_z(t) = A�1z(t) +Bu(t) = (A�1jZ +BG) z(t) = Lz(t):Sine C&D and K are onneted by (2.7), we onlude that z(�) solves (1.1).The uniqueness is heked by going a similar reasoning in reverse order.Theorem 1 gives a working interpretation to di�erential equation (1.1).Note that the trajetory z(�) is ontinuous in Z � X, but _z(�) is omputed(as a limit of a di�erential quotient) in the norm of X.3 Conservativity and time-ow inversesFor some system nodes S = [ A&BC&D ℄, equations (1.2) an be solved bakwardsin time for smooth signals, if the input and output are interhanged by eahother, too. For bounded B, C, D, and D�1, the inverse dynamis an beobtained easily:( _z(t) = ��A +BD�1C��1 z(t)�BD�1y(t);u(t) = �D�1Cz(t) +D�1y(t):The general ase is overed by a formal de�nition whih unfortunately doesnot give muh help for the veri�ation time-ow invertibility:11



De�nition 2. Let S = [ A&BC&D ℄ be an operator node with V = D(S). We saythat S is time-ow invertible, if there exists an operator node S = h [A&B℄ [C&D℄ iwith domain D(S ) = V  � [XY ℄ and the main operator A , suh that(i) both �(A) \ C+ 6= ; and �(A ) \ C+ 6= ;,(ii) � 1 0C&D� : V ! V  is a bounded bijetion, and(iii) we have on all of V  S = ��A�1 �B0 I � � 1 0C&D��1 : (3.1)When these onditions hold for S and S , we say that S is the time-owinverse of S.A boundary ontrol node � = (L;G;K) is time-ow invertible, if theoperator node S obtained in Theorem 1 is time-ow invertible.For a deeper treatment of time-ow invertibility, see [19, 21℄. WheneverS = [ A&BC&D ℄ has a time-ow inverse, we have [ 1 0C&D ℄�1 = � 1 0[C&D℄ �. It followsfrom this that (S ) = S. To understand the underlying symmetry inthings, onsider the following two propositions. From now on, Sd = h [A&B℄d[C&D℄d idenotes the dual node of S, see [13, Proposition 2.3℄ for details.Proposition 5. Let S be a system node. Then S is onservative if and onlyif it is time-ow invertible and Sd = S .Proof. Assume Sd = S . Then by De�nition 2 we have V d = V = [ I 0C&D ℄Vand (3.1) implies�[A&B℄d[C&D℄d� � I 0C&D� = ��A�1 �B0 I � on V: (3.2)Now [13, Lemma 3.2℄ implies that S is energy preserving. Furthermore,Sd = S , (Sd)d = (S )d and with some good faith3 (S )d = (Sd) , too.Thus (Sd)d = (Sd) and by dualizing the above argument, also Sd is energypreserving. The onservativity of S follows.Conversely, let S be onservative. Then (3.2) and its dual version give� I 0[C&D℄d� � I 0C&D� = �I 00 I� on V and� I 0C&D� � I 0[C&D℄d� = �I 00 I� on V d:Hene [ I 0C&D ℄ : V ! V d is a bounded bijetion from V onto V d. Identity(3.2) implies diretly Sd = S , where the operator S is de�ned by (3.1)3...or by a rather long omputation... 12



on V d. But now S is a system node with D(S ) = V d, sine Sd is asystem node. In partiular, the main operator of S satis�es A = A�, andertainly �(A�)\ C + = �(A)\ C + 6= ;, where �(A) denotes the onjugate setof �(A). We onlude that S is time-ow invertible by De�nition 2, and itstime ow inverse satis�es S = Sd.Let us give another easy piee:Proposition 6. An energy preserving system node S is onservative if andonly if it is time-ow invertible.Proof. Conservativity implies time-ow invertibility, by Proposition 5. Forthe onverse diretion, assume that S is both energy preserving and time-ow invertible with the operator node S given by (3.1). The time-owinvertibility implies that [ 1 0C&D ℄V = V . Now identity (3.1) givesS � 1 0C&D� = ��A�1 �B0 I � on all of V:By [13, Lemma 3.2℄, the energy-preserving property implies [ 1 0C&D ℄V � V dand Sd � I 0C&D� = ��A�1 �B0 I � on all of V:We onlude that V  � V d, S = SdjV and A = AdjX 1 . It remains toshow that V d = V .Sine both Ad and A generate a C0-semigroup on X, it follows thatXd1 = X 1 , A = Ad and Xd�1 = X �1. Moreover, S = SdjV implies[A&B℄ = [A��1 C�℄jV , and hene [A��1 C�℄ : [XY ℄ ! Xd�1 is a boundedextension of [A&B℄ . Sine V  is dense in [XY ℄ (see [13, equation (2.2)℄),this is the only possible bounded extension on these spaes. We onludethat [A �1 C ℄ = [A��1 C�℄ on all of [XY ℄, and V = V  follows.We give in Theorem 3 yet another haraterisation for tory systems. Themotivation for this result is the following: for boundary ontrol nodes � =(L;G;K) assoiated to dynamis (1.1), the time-ow inverse is very easy toguess. Indeed, as will be seen in Theorem 6, it is � = (�L;K;G) wheneversuh � satis�es the axioms (a) { (d) of De�nition 1. On the other hand,omputing the dual system �d is quite diÆult 4. The following propositionontains the trik involved.Proposition 7. Assume S = [ A&BC&D ℄ is a time-ow invertible system node.Let A : X 1 ! X be the main operator and C the output operator of thetime-ow inverse S . Assume that the dual ross-term equation holdsC&D � IB�� = 0 on Xd1 ;4Conversely, the adjoint node Sd is almost trivial to obtain for an operator node S, butthe time-ow inverse S is given by the rather diÆult formula (3.1) in De�nition 2.13



and A� = A (with equal domains). ThenA�1 + A� +BB� = 0 on Xd1 and C = B� on Xd1 :Proof. Beause A� = A , we have X 1 = Xd1 . Hene [ x0 ℄ 2 V for allx 2 Xd1 . Beause [ 1 0C&D ℄ : V ! V  is a bounded bijetion (by the existeneof the time-ow inverse), there exists for any x 2 Xd1 a unique vetor [ x1u1 ℄ 2 Vsuh that �x0� = � 1 0C&D� �x1u1� :By using the assumed dual ross-term equation, we see that in fat x1 = xand u1 = B�x. Hene, for any x 2 Xd1�A xC x� = S �x0� = ��A�1 �B0 I � � 1 0C&D��1 �x0�= ��A�1 �B0 I � � xB�x� = ��A�1x� BB�xB�x � :But A x = A�x by assumption, and the laim follows.We an now haraterise tory systems without referring to the dual systemat all:Theorem 3. Assume that S = [ A&BC&D ℄ is a time-ow invertible operator node.By A : X 1 ! X denote the main operator of the time-ow inverse S .Then S is tory5 if and only if(i) Ker B = f0g,(ii) A + A��1 = �C�C on X1,(iii) C&D � IB�� = 0 on Xd1 , and(iv) We have A = A� with equal domains, i.e. X 1 = Xd1 .Proof. Conditions (i) { (iii) are neessary for toryness, again by [13, Theorem4.4℄. By Proposition 5, tory systems satisfy Sd = S , and (iv) follows, too.Assume that onditions (i) { (iv) hold. Then the dual Liapunov equationis given by Proposition 7, and S is tory by [13, Theorem 4.4℄ provided wean show that Ker C� = f0g. Following [13, Proposition 2.4℄, deomposethe spae Y orthogonally Y = � Y1Y0 � where Y1 = Ran C and Y0 = Y ?1 . Theindued deomposition of S is then given byS = � [A&B℄r[C&D℄r0 D01 � : V ! h XY1Y0 i with Sr := h [A&B℄r[C&D℄r i ;here Sr is the redued operator node with output spae Y1, the domainssatisfy V = D(S) = D(Sr), and D01 2 L(U ;Y0) is nonzero if and only if Y0 is5I.e. a onservative system node with Ker B = f0g and Ker C� = f0g.14



nontrivial. Sine B = Br, C = [ Cr0 ℄, and C� = �C�r 0�, we onlude (usingProposition 7) that A + A��1 = �C�rCr on X1, together with A�1 + A� =�BrB�r and [C&D℄r � IB�r � = 0 on Xd1 .It follows from [13, Theorem 4.4℄ that Sr is a tory node, and it is thus time-ow invertible with S r = Sdr = h [A&B℄dr[C&D℄dr i; see Proposition 5. In partiular,� I 0[C&D℄r � : V ! V dr = D(Sdr ) is a bijetion with the inverse h I 0[C&D℄dr i, and[ I 0C&D ℄ = h I 0[C&D℄r0 D01 i. Beause also S is time-ow invertible, we getV = h I 0[C&D℄r0 D01 iV = " [ I 00 I ℄[ 0 D01 ℄ � I 0[C&D℄r ��1#V dr = � [ I 00 I ℄D01 [C&D℄dr�V dr (3.3)and � I 0C&D��1 = � I 0 0[C&D℄dr 0� ����V :But now we obtain S = h [A&B℄dr 0[C&D℄dr 0 i on all of V by (3.1). Beause bothSd and S are operator nodes, it follows that V  = h V drY0 i whih ontradits(3.3) unless D01 = 0. This ompletes the proof.4 Constrution of the time-ow inverseIn this setion, we show that the time-ow invertibility of an operator nodeS = [ A&BC&D ℄ (in the sense of De�nition 2) almost follows if it is known thatS is of boundary ontrol type (see De�nition 1). Indeed, only one extraassumption is needed on the \time-ow-inverted" main operator A .In this setion, we make it a standing assumption that S is an operatornode of boundary ontrol type. We further assume that S and � = (L;G;K)are related to eah other as in Theorems 1 and 2. In partiular, the operatorsL, G and K are given by Proposition 4. The spaes Z and V = D(S) aredesribed (unambiguously) by (2.5), (2.9), and laim (iii) of Proposition 3.Our approah leads { step by step { to the onstrution of the time-owinverse S in Theorem 4.Let us �rst de�ne a Banah spae V whih is �nally going to be thedomain of S in spe. Motivated by De�nition 2, we set plainlyV := � I 0C&D�V � �XY � : (4.1)A Banah spae norm for V  is de�ned byk [ xy ℄ kV := k [ xu ℄ kV where [ xy ℄ = [ I 0C&D ℄ [ xu ℄ : (4.2)With this hoie of norm, the operator [ I 0C&D ℄ : V ! V  beomes an isometrywith an isometri inverse. 15



Not surprisingly, in the boundary ontrol ontext we have the relationsV = � IG�Z and V = � IK�Z (4.3)Hene G and K are expeted to play dual roles with respet to the time-owinversion, and (4.1) an be replaed by V := [ IK ℄Z. Indeed, the latterequality in (4.3) follows from the former by using the identity� I 0C&D� �IG� = � IK� on all of Z: (4.4)It is also instrutive to note that (under the assumptions of Proposition 4)� IG�Ker K = Ker C&D and � IG�X1 = �X1f0g� :Note that in the boundary ontrol ase BU \X = f0g, the upper omponentof [ xu ℄ 2 V = [ IG ℄Z determines the lower. Conversely, the lower omponentdetermines the upper only modulo the spae X1 = Ker G.The symmetry in equalities (4.3) beomes even more pronouned one wedisover that the solution spae Z remains unhanged under the time-owinversion; see (2.9) for the motivation of (4.5):Proposition 8. Make the same assumptions and use the same notations asin Proposition 4. De�ne V  by (4.1). Then Z = Z whereZ := fx 2 X : 9y 2 Y suh that [ xy ℄ 2 V g : (4.5)Proof. By the de�nition of V , we have Z � Z. Conversely, if x 2 Z, then[ xGx ℄ 2 V and [ xKx ℄ = [ I 0C&D ℄ [ xGx ℄ 2 V by (4.4). Hene x 2 Z .Also the spae V is seen to have some of its expeted properties:Proposition 9. Assume that S = [ A&BC&D ℄ is an operator node of boundaryontrol type with Ran C&D = Y . De�ne Z by (2.9) and V by (4.1). Thenthe following holds:(i) For all y 2 Y there exists x 2 Z(= Z ) suh that [ xy ℄ 2 V .(ii) The inlusion V � [ ZY ℄ is bounded.(iii) Ker K = fx 2 X : [ x0 ℄ 2 V g.Proof. Denote V = D(S) and �x y 2 Y . Then for any x 2 Z the equality�xy� = � I 0C&D� �x1u � for �x1u � 2 Vis equivalent to x = x1 and y = C&D �xu� for �xu� 2 V:16



Beause Ran C&D = Y , then there exists suh a [ xu ℄ 2 V with x 2 Z. Toprove laim (ii), we �rst estimate the norm of [ xy ℄ = [ I 0C&D ℄ [ xu ℄:k [ xy ℄ k[XY ℄ � (kxkX + kykY ) � �kxkX + kC&DkL(V ;Y )k [ xu ℄ kV �� max �1; kC&DkL(V ;Y )� � (kxkX + kxkX + kukU + kA�1x +BukX)� 2max �1; kC&DkL(V ;Y )� � (kxkX + kukU + kA�1x +BukX)� 6max �1; kC&DkL(V ;Y )� � k [ xu ℄ kV :Now, the boundedness of the inlusion V � [XY ℄ follows from (4.2). Byde�nition, we have V � [ ZY ℄. As in the beginning of the proof of Proposition3, we see that also the inlusion V  � [ ZY ℄ is bounded and (ii) follows.To verify the last laim (iii), reall that V = [ 1 0C&D ℄V and V = [ IG ℄Z.We have x 2 X with [ x0 ℄ 2 V if and only if [ x0 ℄ = [ 1 0C&D ℄ [ zGz ℄ for some z 2 Zif and only if for some z 2 Zx = z and 0 = C&D �IG� z = Kzif and only if x 2 Ker K.To get ahead, we must assume that Ker K is dense6 in X.Proposition 10. Assume that S = [ A&BC&D ℄ is an operator node of boundaryontrol type with Ran C&D = Y . De�ne V  by (4.1), and assume thatKer K is dense in X. Then V is dense in [XY ℄.Proof. Let [ xy ℄ 2 [XY ℄ be arbitrary. As Ran C&D = Y , there exists [ zv ℄ 2V = D(S) suh that y = C&D [ zv ℄. Beause Ker K is dense in X, there isa sequene fxjgj�0 � Ker K suh that xj ! x � z 2 X in the norm of X.Now, C&D � z + xjv +Gxj� = C&D �zv�+ C&D �IG�xj = y +Kxj = y:Using this givesV  3 � I 0C&D� � z + xjv +Gxj� = �z + xjy �! �xy�in the norm of [XY ℄ sine z + xj ! x in the norm of X.Under the assumptions of Proposition 10, the linear mappingS := ��A�1 �B0 I � � 1 0C&D��1 : V  � �XY �! �XU � (4.6)is densely de�ned. We next establish that S is an operator node, so asto verify that S is time-ow invertible in the sense of De�nition 2. For thispurpose, we need to de�ne some new objets:6If S was already known to be time-ow invertible, this would be a neessary onditionfor S to be of boundary ontrol type; see (4.3) together with Proposition 8. So, we donot regret making this assumption at all. 17



De�nition 3. Assume that S = [ A&BC&D ℄ is an operator node of boundaryontrol type with Ran C&D = Y , and let the boundary ontrol node � =(L;G;K) be given by Theorem 2. Assume that Ker K is dense in X.(i) The mapping A : Ker K ! X is de�ned by A := �LjKer K.(ii) The mapping C : Ker K ! Y is de�ned by C := GjKer K.De�nition 4. Make the same assumptions and use the same notations asin De�nition 3. Assume, in addition, that �(A ) \ C + 6= ; with D(A ) =Ker K.(i) Denote by X �1 the ompletion7 of X in norm kxkXd�1 := k(��A )�1xkfor � 2 �(A ) \ C + .(ii) De�ne B : Y ! X �1 by setting for all x 2 ZB Kx := �Lx� A �1x; (4.7)where A �1 2 L(X;X �1) is the Yosida extension of A .The linear mapping B in part (ii) of De�nition 4 is well-de�ned. Notethat Lx 2 X � X �1 in (4.7) beause L 2 L(Z;X) by Proposition 4. Henethe right hand side of (4.7) de�nes a unique element ofX �1. The B mappingis also uniquely de�ned: if y = Kx1 = Kx2, then x1� x2 2 Ker K; but both�L and A �1 are extensions of A de�ned on Ker K. The operator B isde�ned on all of Y , sine Ran K = Ran C&D = Y by Proposition 4.Proposition 11. Assume that S = [ A&BC&D ℄ is an operator node of boundaryontrol type with Ran C&D = Y . De�ne V by (4.1) and the operators A ,B by De�nition 3. Assume that Ker K is dense in X and �(A )\C + 6= ;.Then the following holds:(i) B 2 L(Y ;X �1) and Ker B = f0g.(ii) The spae V satis�esV = �[ xy ℄ 2 [XY ℄ : A �1x+B y 2 X	 (4.8)and the norm (4.2) for V is equivalent tok [ xy ℄ k2V := kxk2X + kyk2Y + kA �1x+B yk2X : (4.9)(iii) The operator [A&B℄ := �A �1 B � jV is losed from [XY ℄ to X,with domain D([A&B℄ ) = V  .7See the disussion following Proposition 1.18



Proof. We show that B yj ! 0 in X �1 for all sequenes yj ! 0 in Y . AsK 2 L(Z;Y ) and Ran K = Y by laim (ii) Proposition 4, there exists asequene fxjgj�0 � Z 	 Ker K (orthogonality taken in the sense of (2.2))and yj = Kxj. Beause Kj (Z 	 Ker K) has a bounded inverse Y ! Z 	Ker K, it follows that xj ! 0 in Z and in the weaker norm of X, too. AsA �1 2 L(X;X �1), it follows that A �1xj ! 0 in X �1. As L 2 L(Z;X),it follows that Lxj ! 0 in X and hene in X �1, too. By equation (4.7),B Kxj = B yj ! 0 in X �1.We prove next that Ker B = f0g. Assume that B y = 0 for somey = Kx, x 2 Z. Then A �1x = �Lx 2 X by (4.7). It follows that x 2D(A ) = Ker K and y = Kx = 0. Thus laim (i) holds.Claim (ii) is treated next. Let [ xy ℄ 2 V  be arbitrary, and note that x 2 Zand y = Kx by (4.3). Rewriting (4.7) we get A �1x + B y = �Lx 2 X,sine L 2 L(Z;X). To prove the onverse inlusion in (4.8), assume that[ xy ℄ 2 [XY ℄ satis�es A �1x + B y 2 X. As Ran K = Y by Proposition 4, wehave y = Kz for some z 2 Z. NowX 3 A �1x +B y = �A �1 +B K� z + A �1(x� z) (4.10)= �Lz + A �1(x� z);where we have used (4.7) again. Beause �Lz 2 X, equation (4.10) impliesA �1(x � z) 2 X, and thus x � z 2 D(A ) = Ker K. We onlude thaty = Kz = Kx and so [ xy ℄ = [ xKx ℄ 2 [ IK ℄Z = V follows.It is lear that V  with norm (4.9) is a Banah spae, and V  � [XY ℄with a bounded (even dense) inlusion. Reall that V  with norm (4.2) is aBanah spae, and also then the inlusion V  � [XY ℄ is bounded, by laim(ii) of Proposition 9. Hene, these two di�erently normed versions of V are ompatible Banah spaes (in the sense of interpolation theory) and theirnorms are aordingly equivalent.To prove laim (iii), note that �A �1 B � 2 L([XY ℄ ;X �1) by laim (i)and the fat that A �1 2 L(X;X �1). Now, [A&B℄ is losed, as it is therestrition of bounded �A �1 B � to its natural domain V , when the rangeis restrited to a subset of X.Now omes the main result of this setion;Theorem 4. Assume that S = [ A&BC&D ℄ is an operator node of boundary ontroltype with Ran C&D = Y , and let the boundary ontrol node � = (L;G;K)be given by Theorem 2. De�ne V  := [ IK ℄Z and S by (4.6). Assume that�LjKer K is a densely de�ned operator on X, with �(�LjKer K)\ C + 6= ;.De�ne the operators A , B , and C by De�nition 3. Then the follow-ing holds:(i) S : D(S ) � [XY ℄! [XU ℄ is an operator node with D(S ) = V .The main operator of S is A with domain D(A ) = Ker K. The op-erator B is the input operator of S , and the ombined feedthrough/output19



operator [C&D℄ of S satis�es[C&D℄ �xy� = Gx for all �xy� 2 V  : (4.11)(ii) The operator node S is time-ow invertible, and its time-ow inverseequals S .Proof. The operator B lies in L(Y ;X �1) by laim (i) of Proposition 11.The operator [A&B℄ := �A �1 B � jV is losed and densely de�ned withD([A&B℄ ) = V  by Propositions 10 and 11. De�ne [C&D℄ : V  ! U by(4.11), and note that it is well de�ned by Proposition 9. Let us now estimatek[C&D℄ [ xy ℄ kU � kGkL(Z;U)k [ xy ℄ k[ZY ℄ � kGkL(Z;U) � Ck [ xy ℄ kV ;sine the inlusion V  � [ ZY ℄ is bounded by onstant C, see Proposition 9.We onlude that S 0 := h [A&B℄ [C&D℄ i is an operator node with D(S 0) = V .We proeed to show that S = S 0. For all [ xKx ℄ 2 [ IK ℄Z = V (in otherwords, for all x 2 Z) we have�[A&B℄ [C&D℄ � � xKx� = ��A �1 +B K�xGx � = �� (A�1 +BG)xGx �= ��A�1 �B0 I � � xGx� = ��A�1 �B0 I � � 1 0C&D��1 � xKx� ;where the seond equality follows from (4.7). By De�nition 2, S = h [A&B℄ [C&D℄ i,and the proof is omplete.Corollary 1. Make the same assumptions as in Theorem 4. Then thetime-ow inverse S is an operator node of boundary ontrol type satisfyingRan [C&D℄ = U .Proof. Reall that Ker B = f0g by laim (i) of Proposition 11. It followsdiretly from (4.11) that Ran [C&D℄ = U , as Ran G = U by laim (i) ofProposition 4.If ~z 2 B Y \X, ~z 6= 0, then ~z = B ~y for some ~y 6= 0. Suppose [ xy ℄ 2 V  .Then we have both A �1x+B y 2 X and A �1x+B (y+ ~y) 2 X, implyingthat both [ xy ℄ 2 V  and [ xy+~y ℄ 2 V . It now follows that the spae V  annot be of graph form [ IK ℄Z for any linear mapping K : Z ! U . Thisontradition proves that B Y \X = f0g.
20



5 Duals of onservative boundary ontrolsystemsIn ontrast to the previous setion, the operators A , �aB , and C areno longer de�ned a priori by De�nition 3. Instead, now they denote themain, input, and output operators of the time-ow inverse S = h [A&B℄ [C&D℄ iof S; existene of S is assumed a priori. The next proposition is a partialonverse result to Theorem 4, and it will be needed in the proof of Theorem5 and Lemma 2.Proposition 12. Assume that S = [ A&BC&D ℄ is a time-ow invertible operatornode of boundary ontrol type, with Ran C&D = Y . Let the assoiatedboundary ontrol node � = (L;G;K) be given by Theorem 2. Denote by A the main operator and by C the output operator of time-ow inverse S .Then D(A ) = Ker K, A = �LjKer K, and C = GjKer K.Proof. By the standard theory of operator nodes, we have D(S ) = V and D(A ) = fx 2 X : [ x0 ℄ 2 V g where V is de�ned by (4.8). By thetime-ow invertibility of S, we have [ I 0C&D ℄V = V  , and the operator [ I 0C&D ℄is a bounded bijetion from V := D(S) onto V  . Realling the reasoningleading to (4.3), we have V = [ IG ℄Z and V  = [ IK ℄Z. Now [ x0 ℄ 2 V if andonly if x 2 Z and Kx = 0 if and only if x 2 Ker K. Hene D(A ) = Ker K.To omplete the proof, we ompute by using (3.1)�A xC x� = S �x0� = ��A�1 �B0 I � � 1 0C&D��1 �x0� (5.1)= ��A�1 �B0 I � � xGx� = ��LxGx �for any x 2 D(A ), where we have one again used the fat that [ x0 ℄ =[ xKx ℄ 2 V  implying [ I 0C&D ℄�1 [ xKx ℄ = [ xGx ℄ 2 V .Dual systems of tory boundary ontrol systems are boundary ontrol sys-tems themselves:Theorem 5. Assume that S = [ A&BC&D ℄ is a tory operator node of boundaryontrol type, with Ran C&D = Y . Let the assoiated boundary ontrol node� = (L;G;K) be given by Theorem 2. By Sd denote the dual node of S,with main operator A� 2 L(Xd1 ;X). Then the dual system Sd is of boundaryontrol type, and its solution spae satis�es Zd = Z.Proof. By Proposition 5, S is time-ow invertible, S = Sd, A = A�, andD(A ) = Xd1 ; here A� is a generator of a C0-semigroup of ontrations onX. By Proposition 12, we have D(A ) = Ker K and �LjKer K = A .Beause now �LjKer K = A�, we onlude that Ker K = Xd1 is dense in Xand �(�LjKer K)\C + 6= ;. Now the laim follows from Corollary 1 beauseall of the assumptions of Theorem 4 are satis�ed.21



6 Time-ow invertibility and onservativityof boundary ontrol nodesWe are now ready to apply all the previous results to onservative boundaryontrol systems. First omes an adaptation of Theorem 3 to the boundaryontrol ontext.Lemma 2. Assume S = [ A&BC&D ℄ is an operator node of boundary ontroltype with Ran C&D = Y , and let the assoiated boundary ontrol node � =(L;G;K) be given by Theorem 2. Then S is tory if and only if(i) the primal Liapunov equation A+ A��1 = �C�C holds on X1,(ii) we have Gx = B�x for all x 2 Xd1 := D(A�), and(iii) the identity �LjKer K = A� holds (with equal domains).Proof. We start from the more interesting \suÆieny" part. It is lear thatondition (i) of Theorem 3 always holds for boundary ontrol systems. Con-ditions (ii) and (iv) of Theorem 3 are same as ondition (i) and (iii) of thislemma. By ondition (iii), we have Xd1 = Ker K � Z. By ondition (ii) wehave [ IB� ℄ x = [ IG ℄ x � [ IG ℄Z = V for all x 2 Xd1 , and hene C&D [ IB� ℄ x 2 Yis well de�ned; see laim (iii) of Proposition 3. Now, by the de�nition of op-erator K (see laim (ii) of Proposition 4), we obtain C&D [ IB� ℄x = Kx = 0for all x 2 Xd1 . This is ondition (iii) of Theorem 3, namely the dual ross-term equation. Time-ow invertibility of S follows from ondition (iii) andTheorem 4 sine �LjKer K = A� and �(A) \ C + 6= ;.To prove the \neessity" part, assume that S is tory. Suh S is time-owinvertible by Proposition 5, S = Sd, and all the onditions of Theorem 3hold; inluding onditions (i) and (iii) of this lemma hold, too.By [13, Theorem 4.4℄, the dual Liapunov equation holds in the form�A�1 B� � IB��x = �A�x 2 X for all x 2 Xd1 = Ker K;and hene [ IB� ℄ Ker K � V = D(S). But beause S satis�es the onditionsProposition 4, we have V = [ IG ℄Z. Now the inlusion [ IB� ℄ Ker K � [ IG ℄Zimplies ondition (ii) of this lemma.We have atually proved above that ondition (ii) of Lemma 2 an bereplaed by the inlusion [ IB� ℄ Ker K � V .It is now time to turn attention to boundary ontrol nodes � = (L;G;K).We show �rst that doubly boundary ontrol nodes an, indeed, be time-owinverted as expetedly.Theorem 6. Let � = (L;G;K) be a doubly boundary ontrol node, andassume that S = [ A&BC&D ℄ is the assoiated operator node given by Theorem 1.Then S is time-ow invertible, Ran C&D = Y , and the time-ow inverseS is of boundary ontrol type. Moreover, S is the operator node assoiatedto � := (�L;K;G) in the sense of Theorem 222



In other words, it is right to all � the time-ow inverse of �.Proof. Beause � = (�L;K;G) is a boundary ontrol node, Ker K is densein X and Y = Ran K. Sine � is a boundary ontrol node, it follows nowthat Ran C&D = Y , see Proposition 4. Applying Proposition 1 to � showsthat �(�LjKer K) \ C + 6= ;. Thus S is time-ow invertible by Theorem 4.By Corollary 1, S is of boundary ontrol type, and so it orrespondsto some boundary ontrol node �0 := (L0; G0; K 0). Clearly �0 has a ommonsolution spae Z with S and S , see Proposition 8. Moreover, V = D(S )satis�es (4.3), and hene G0 = K. By using the symmetry (S ) = S, alsoG = K 0 follows.Denoting by A , A �1 the main operator of S and its Yosida extension,we have A �1jZ + B K = �L on all of Z; see Theorem 4 and equation(4.7). Applying laim (iii) of Proposition 4 to S , we onlude that L0 =A �1jZ +B K. Hene L0 = �L, and the proof is omplete.Now ome the main results of this paper.Theorem 7. Let � = (L;G;K) be a doubly boundary ontrol node, andassume that S = [ A&BC&D ℄ is the assoiated operator node given in Theorem 1.Then S is onservative (hene, tory) if and only if(i) 2Re hx; LxiX = �kKxk2Y for all x 2 Ker G,(ii) hz; LxiX + hLz; xiX = hGz;GxiU for all z 2 Z and x 2 Ker K.Proof. Sine � is is a doubly boundary ontrol node, the time-ow inverseS exists by Theorem 6, and it is of boundary ontrol type. For the usualspaes and operators involving S and S , we have the identities X1 = Ker G,A = LjKer G, C = KjKer G, X 1 = Ker K, A = �LjKer K, and C =GjKer K. Then (i) is same as 2Re hx;AxiX = �kCxk2Y for all x 2 X1, whihis (by polarisation) equivalent to ondition (i) of Lemma 2. Condition (ii) ofLemma 2 holds if and only if�hz; A�xiX + hLz; xiX = hGz;GxiU for all z 2 Z and x 2 D(A�); (6.1)sine Ran G = U and BGz = �A�1z + Lz. This together with ondition(iii) of Lemma 2 imply ondition (ii).Beause X1 is dense in X, ondition (iii) of Lemma 2 holds if and only ifX 1 = D(A�) and hz; A xiX = hz; A�xiX for all z 2 X1; x 2 D(A�) if andonly ifhz; LxiX + hLz; xiX = 0 for all z 2 Ker G and x 2 Ker K: (6.2)Clearly (ii) implies (6.2), and hene it implies ondition (iii) of Lemma 2,too. Finally note that (ii) together with ondition (iii) of Lemma 2 imply(6.1) and thus ondition (ii) of Lemma 2.23



Note that ondition (ii) of Theorem 7 implies 2Re hx;�LxiX = �kGxk2Ufor all x 2 Ker G, whih is equivalent to the (primal) Liapunov equation ofthe time-ow inverse S .There is another variant of Theorem 7 whose formulation is more sym-metri but slightly weaker.Theorem 8. Let � = (L;G;K) be a doubly boundary ontrol node, andassume that S = [ A&BC&D ℄ is the assoiated operator node given in Theorem1. Then S is onservative (hene, tory) if and only if the Green{Lagrangeidentity 2Re hz0; Lz0iX = kGz0k2U � kKz0k2Y (6.3)holds for all z0 2 Z.Proof. By polarisation identity, (6.3) implies for all z1; z2 2 Z the identityhz1; Lz2iX + hLz1; z2iX = hGz1; Gz2iU � hKz1; Kz2iU . It is trivial that boththe onditions (i) and (ii) of Theorem 7 follow from this.Conversely, assume that S is onservative. Let z0 2 Z be arbitrary andu 2 C2([0;1);U) suh that Gz0 = u(0). By Lemma 1, there exists a solutionz(�) 2 C([0;1);Z) \ C1([0;1);X) of (1.1) that satis�es z(0) = z0 andddtkz(t)k2X = ku(t)k2U � ky(t)k2Y . Di�erentiating and using (1.1) giveshz(t); Lz(t)iX + hLz(t); z(t)iX = hGz(t); Gz(t)iU � hKz(t); Kz(t)iYfor all t > 0. Sine all the operators L, G and K are bounded from spae Zand z(�) 2 C([0;1);Z), we may take the limit as t! 0+. Now (6.3) followsbeause z0 2 Z was arbitrary.7 Five examplesWe review the �ve easiest, well-known PDE examples of onservative bound-ary ontrol systems, and hek how our tehniques work for them.7.1 Delay lineWe onsider the delay line system S on state spae X = L2(0; 1). The Lax-Phillips group of the system is the unitary right (forward) shift on L2(R), andhene S is a onservative system with a nilpotent semigroup. The system Sis given in PDE form as follows:8><>: zt(t; �) = �z�(t; �) for all t � 0 and � 2 (0; 1);z(t; 0) = u(t) and z(t; 1) = y(t) for all t � 0;u(0; �) = u0(�) for all � 2 (0; 1);The system theory of suh equations has been treated e.g. in [2℄, [11℄ in amore general setting. The input (output) end of the delay line is at � = 0(� = 1, respetively). Hene L = � dd� , Gz = z(0) and Kz = z(1), and the24



solution spae is Z = H1(0; 1). It is easy to hek that � := (L;G;K) is adoubly boundary ontrol node.Let us hek that � satis�es the onditions of Theorem 7. Verifying (i)amounts to omputing the integral2Re 1Z0 x(�) (�x0(�)) d� = � 1Z0 dd� jx(�)j2 d� = �jx(1)j2sine x(0) = 0 in Ker G. To prove (ii), integrate partially1Z0 z(�) (�x0(�)) d� + 1Z0 z0(�) (�x(�)) d�= �z(1)x(1) + z(0)x(0) = z(0)x(0)sine now x(1) = 0 in Ker K.7.2 Vibrating stringConsider the system S desribed by the wave equation on interval [0; 1℄ withendpoint ontrol and observation:8>>>>>><>>>>>>:
ztt(t; �) = z��(t; �) for � 2 (0; 1) and t � 0;�zt(t; 1)� z�(t; 1) = p2u(t) for t � 0;p2 y(t) = �zt(t; 1) + z�(t; 1) for t � 0;z(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.1)Equations (7.1) an be ast into form of (1.1) by using the ruleztt = z�� =̂ ddt �zw� = � 0 �1� d2d�2 0 � �zw� :Heneforth let L := h 0 �1� d2d�2 0 i : Z ! X, together withZ := �H1f0g(0; 1) \H2(0; 1)��H1f0g(0; 1); X := H1f0g(0; 1)� L2(0; 1)where H1f0g(0; 1) := �z 2 H1f0g(0; 1) : z(0) = 0	 :It follows diretly that Z = fz 2 X : Lz 2 Xg and X = LZ. The Hilbertspaes X and Z are equipped with their diret sum inner produts for nowbut another norm for X will be given in Proposition 7.2. Then Z � X witha bounded inlusion and L 2 L(Z;X).The (restrition of the distribution) derivative of z 2 H1(0; 1) is denotedby z0 2 L2(0; 1)8. The operators G : Z ! C and K : Z ! C are de�ned byG [ z0w0 ℄ := 1p2 (w0(1)� z00(1)) and K [ z0w0 ℄ := 1p2 (w0(1) + z00(1)) :8But the time derivative is always denoted by subindex t.25



Clearly Ker G = f[ z0w0 ℄ 2 Z : w0(1) = z00(1)g. Sine point evaluations (alsoon the boundary point 1) are ontinuous in H1(0; 1), it follows that G;K 2L(Z; C ). By approximating the omponents of z0 2 X by C2-funtions, itfollows that Ker G is dense in X.It is easy to see that Ker L = �� �0 � :  2 C 	 where �(�) = � for � 2(0; 1). We show next that the onditions () and (d) of De�nition 1 holdfor � = 0. Trivially Ker L \ Ker G = f0g. Also LKer G = X, as for anyx 2 X there exists [ z0w0 ℄ 2 Z so that L � z0+�w0 � = x for all  2 C . Choosing = w0(1)� z00(1), we see that � z0+�w0 � 2 Ker G. We have now:Proposition 13. Let the operators L, G, K and spaes Z, X be de�ned asearlier in this subsetion.(i) The triple � = (L;G;K) is a boundary ontrol node in the sense ofDe�nition 1. The domain spae V = [ IG ℄Z for the assoiated operatornode is given byV = �� z0w01p2(w0(1)�z00(1)) � : z0 2 H1f0g(0; 1) \H2(0; 1) and w0 2 H1f0g(0; 1)� :(ii) For any u 2 C2([0;1)) and [ z0 w0 u(0) ℄T 2 V , there exists a uniquelassial solutionz(�) 2 C([0;1);H2(0; 1))\C1([0;1);H1f0g(0; 1))\C2([0;1);L2(0;1))of (7.1) satisfying the initial onditions z(0) = z0 and zt(0) = w0.The requirement [ z0 w0 u(0) ℄T 2 V is known as a ompatibility onditionin PDE literature.Proof. Only (ii) has not been proved yet. If we show that LjKer G is adissipative operator (whih will be omitted now, as it follows from Proposition13 anyway), then there exists a unique solutionh z(�)�zt(�) i 2 C([0;1);Z) \ C1([0;1);X)for (1.1) by Lemma 1. Then z(�) solves (7.1) (in the sense of distributions),and it has the other required properties, too.Let us treat the energy balane questions next. From equations (7.1) wesee that zt(t; 1) = 1p2 (u(t) + y(t)) and z�(t; 1) = 1p2 (u(t)� y(t)). By partialintegration, we get (at least formally) for solutions of (7.1)ddt 1Z0 jz�(t; �)j2 d� = 2Re zt(t; 1)z�(t; 1)� ddt 1Z0 jzt(t; �)j2 d�:26



Thus ddtE(z; t) = ju(t)j2 � jy(t)j2 where the energy funtional is de�ned byE(z; t) := 1Z0 �jz�(t; �)j2 + jzt(t; �)j2� d� = kz0(t)k2L2(0;1) + kzt(t)k2L2(0;1):This energy funtional is assoiated to a norm on the state spae X, whihmakes S an energy preserving system:Proposition 14. The expressionk [ z0w0 ℄ k2X := kz00k2L2(0;1) + kw0k2L2(0;1) (7.2)de�nes a Hilbert spae norm for X suh that E(z; t) = k h z(t)zt(t) i k2X for all allsolutions z(�) of (7.1) satisfying the onditions of Proposition 13.Proof. Equation (7.2) de�nes learly a norm on X, and we havek [ z0w0 ℄ k2X < kz0k2L2(0;1) + k [ z0w0 ℄ k2X = k [ z0w0 ℄ k2H1f0g(0;1)�L2(0;1):The elementary form of the Poinar�e inequality kz0kL2(0;1) � kz00kL2(0;1) iseasy to show for z0 2 H1f0g(0; 1), and it implies the onverse inequalityk [ z0w0 ℄ k2H1f0g(0;1)�L2(0;1) � 2k [ z0w0 ℄ k2X : The rest is lear from Proposition 13.Proposition 15. Let the operators L, G, K and spaes Z, X be de�nedas earlier in this subsetion. Use the energy norm (7.2) for X. Then � =(L;G;K) desribes a onservative system, assoiated to wave equation (7.1).Proof. It is a matter of hanging a few signs in the earlier omputations ofthis subsetion to verify that � = (�L;K;G) is a boundary ontrol node.For an arbitrary [ z0w0 ℄ 2 Ker G, integrate partially to obtain� 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re 
[ z0w0 ℄ ; � w0z000 ��X= hz000 ; w0iL2(0;1) + hz00; w00iL2(0;1) + hw0; z000 iL2(0;1) + hw00; z00iL2(0;1)= 2Re �z00(1)w0(1)� z00(0)w0(0)� = 2jw0(1)j2 = jK [ z0w0 ℄ j2;where the seond to last equality follows from w0(0) = 0 (sine [ z0w0 ℄ 2 Z),and w0(1) = z00(1) (sine [ z0w0 ℄ 2 Ker G). Hene ondition (i) of Theorem 7follows.To establish ondition (ii), let [ z1w1 ℄ 2 Z and [ z2w2 ℄ 2 Ker K. Then w1(0) =w2(0) = 0, z02(1) = �w2(1), and G [ z2w2 ℄ = p2w2(1). By partial integrationand using the boundary onditions, we geth[ z1w1 ℄ ; L [ z2w2 ℄iX + hL [ z1w1 ℄ ; [ z2w2 ℄iX= �hz01; w02iL2(0;1) � hz001 ; w2iL2(0;1) � hw01; z02iL2(0;1) � hw001 ; z2iL2(0;1)= z01(1)w2(1) + w1(1)z02(1) = �z01(1)� w1(1)�w2(1) = G [ z1w1 ℄G [ z2w2 ℄ :This ompletes the proof. 27



7.3 Telegraph equationA slight generalisation of the vibrating string is given by the telegraph equa-tion for parameter k 2 R:8>>>>>><>>>>>>:
ztt(t; �) = k2z(t; �)� z��(t; �) for � 2 (0; 1) and t � 0;�zt(t; 1)� z�(t; 1) = p2u(t) for t � 0;p2 y(t) = �zt(t; 1) + z�(t; 1) for t � 0;z(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.3)The analysis of this example is analogous to that in Subsetion 7.2, andonly some di�erenes are indiated. The operator L is this time given byL := h 0 �1k2� d2d�2 0 i. The spaes Z and X, together with the operators G andK are same as for the vibrating string. With these de�nitions, the triple� = (L;G;K) appears to be a doubly boundary ontrol node. If the energynorm is de�ned byk [ z0w0 ℄ k2X := kz00k2L2(0;1) + k2kz0k2L2(0;1) + kw0k2L2(0;1);node � is seen to desribe a onservative system, by almost same omputa-tions as in the proof of Proposition 15.7.4 Reeting mirrorThis example is very muh like the vibrating string, and for that reason wedisuss in detail only the new aspets that emerge. We shall review the moreompliated struture of Sobolev spaes and the ellipti regularity theory. Amore general version has been treated in terms of \thin air" systems in [24,Setion 7℄; a onstrution that bears some resemblane to feedbak tehniquesappearing in [23℄. Our approah resembles the tehniques of [9℄.Suppose 
 � Rn , n � 2, is an open bounded set with C2-boundary �
.We assume that �
 is the union of two sets �0 and �1 with �0 \ �1 = ; 9.System S is desribed by the exterior problem8>>>>>><>>>>>>:
ztt(t; �) = �z(t; �) for � 2 
 and t � 0;�zt(t; �)� �z�� (t; �) = p2 u(t; �) for � 2 �1 and t � 0;p2 y(t; �) = �zt(t; �) + �z�� (t; �) for � 2 �1 and t � 0;z(t; �) = 0 for � 2 �0 and t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 
: (7.4)We obtain equations of form (1.1) by using the ruleztt = �z =̂ ddt �zw� = � 0 �1�� 0 � �zw� :9The sets �1 and �0 are allowed to have zero distane in [24℄. This is possible beausestronger bakground results from [14℄ are used there.28



In analogy with the vibrating string, let L := � 0 �1�� 0 � : Z ! X withZ := Z0 �H1�0(
) and X := H1�0(
)� L2(
)where Z0 := �z 2 H1�0(
) \H3=2(
) : �z 2 L2(
)	 :The norm for Z0 is given bykz0k2Z0 := kz0k2H1(
) + kz0k2H3=2(
) + k�z0k2L2(
):For spae X, we use the energy normk [ z0w0 ℄ k2X := kjrz0jk2L2(
) + kw0k2L2(
): (7.5)As is well known, it follows from Poinar�e inequality kz0kL2(
) � Kkjrz0jkL2(
)for z0 2 H1�0(
) that this norm is equivalent to the diret sum norm of X,see e.g. [9, p. 168℄. Thus Z � X with a bounded inlusion and L 2 L(Z;X).Let us review the properties of Sobolev spaes and the trae mappings.The spaes Hs(
) := W 22 (
) for s = 1; 3=2; 2, and the boundary spaesH1=2(�
), H1=2(�0), and H1=2(�1) are de�ned as usual, see [5, De�nition1.3.2.1℄. Note that (by extending funtions by zero on the other omponent)L2(�
) = L2(�0) � L2(�1). Beause �0 \ �1 = ;, we have (by loality)H1=2(�
) = H1=2(�0)�H1=2(�1), too. By [5, Theorem 1.5.1.3℄ the (Dirihlet)trae operator  mapsH1(
) 3 g 7! gj�
 2 H1=2(�
) � L2(�
);and thus  2 L(H1(
);L2(�
)). Now, let � be the orthogonal projetionof L2(�
) onto L2(�1); the latter regarded as a subspae of L2(�
) in anatural way. With a slight misuse of notation, we write �g = gj�1 and(I � �)g = gj�0. Sine now (I � �) 2 L(H1(
);L2(�
)), the spaeH1�0(
) := Ker (I � �) = �g 2 H1(
) : gj�0 = 0	is a losed subspae of H1(
). So 0 := �jH1�0(
) 2 L(H1�0(
);L2(�1)) andwe abbreviate 0g = gj�1.In the same manner, Z0 is a losed subspae of H3=2(
) sine Z0 �H1(
) � H3=2(
) with ontinuous inlusions. By [5, Theorem 1.5.1.2℄,the (Neumann) trae operator  ��� 2 L(H3=2(
);L2(�
)) for 
 has a C2-boundary. Now 1 := � ��� jZ0 2 L(Z0;L2(�1)); and we write 1g = �g�� j�1.De�ning U = Y := L2(�1), we get G 2 L(Z;U) and K 2 L(Z;Y ) whereG [ z0w0 ℄ := 1p2 ���z0�� j�1 + w0j�1� and K [ z0w0 ℄ := 1p2 ��z0�� j�1 + w0j�1� :We shall require some fats from the ellipti regularity theory. Following[23, p. 444℄, we denote the Neumann mapping ~N byh = ~Ng , 8><>: �h = 0 in 
;hj�0 = 0 in �0;�h�� j�1 = g in �1; (7.6)
29



where h 2 H1�0(
) is the unique variational solution. By the ellipti regularitytheory, ~N 2 L(L2(�1);H3=2(
)) \ L(H1=2(�1);H2(
)). Moreover, if z0 2H1�0(
) is the unique variational solution of�h = f 2 L2(
); hj�0 = 0; �z0�� j�1 = 0;then h 2 H2(
), see [9, Setion 4℄. Hene, the unique variational solution of�h = f 2 L2(
); hj�0 = 0; �h�� j�1 = gbelongs to H3=2(
) (H2(
)) if g 2 L2(�1) (H1=2(�1), respetively).It is worth mentioning that the spae Z0 is given in another equivalentform [24, Setion 7℄:Proposition 16. Under the standing assumptions on �1 and �2, the spaeZ0 satis�esZ0 = fz0 2 H1�0(
) : �z0 2 L2(
) and �z0�� j�1 2 L2(�1)g:Proof. If z0 2 H3=2(
), then �z0�� j�1 2 L2(�1) by [5, Theorem 1.5.1.2℄. Con-versely, if z0 2 H1(
) is the variational solution of�z0 = f 2 L2(
); z0j�0 = 0; �z0�� j�1 = g 2 L2(�1);then z0 2 H3=2(
) by what has been said above about ellipti regularity.There is another onsequene of ellipti regularity that depends on theassumption that �0 \ �1 = ;:Proposition 17. Under the standing assumptions on �1 and �2, we haveKer G = �[ z0w0 ℄ 2 �H1�0(
) \H2(
)��H1�0(
) : �z0�� j�1 = w0j�1� :Proof. If [ z0w0 ℄ 2 Ker G, then w0 2 H1(
) and hene w0j�1 2 H1=2(�1). Butthen z0 is the variational solution of�z0 = f 2 L2(
); z0j�0 = 0; �z0�� j�1 = w0j�1 2 H1=2(�1);and so z0 2 H2(
) by ellipti regularity.Note that Z0 � H2(
) never holds beause this would ontradit the fatthat 1Z0 = L2(�1), as given in the proof of the following:Proposition 18. Let the operators L, G, K and spaes Z, X be de�ned asabove. Then � = (L;G;K) is a doubly boundary ontrol node.30



Proof. Sine ~N 2 L(L2(�1);H3=2(
)), we have ~NL2(�1) � Z0. Furthermore,for any g 2 L2(�1) we have 1 ~Ng = g. Thus 1Z0 = L2(�1), and ondition(a) of De�nition 1 is satis�ed. It is not diÆult to see, using Proposition17, that Ker G is dense in X = H1�0(
) � L2(
): let � > 0, [ z0w0 ℄ 2 Xand hoose [ ~z~w ℄ 2 �H1�0(
) \ C1(
)� � H1�0(
) with k [ z0w0 ℄ � [ ~z~w ℄ kX < �.It is possible to onstrut ŵ 2 H1�0(
) satisfying kŵkL2(
) < � and ŵj�1 =~wj�1 � �~z�� j�1; indeed, suh ŵ ould be made to vanish in almost all of 
exept for points very lose to �1 by using a suitable smooth\molli�er". Now� ~z0~w0 � := [ ~z~w ℄� [ 0̂w ℄ 2 Ker G and k [ z0w0 ℄� � ~z0~w0 � kX < 2�.Now, let [ z1w1 ℄ 2 X be arbitrary. By Proposition 17, [ z1w1 ℄ = L [ z0w0 ℄ =� �w0��z0 � for [ z0w0 ℄ 2 Ker G if and only if w0 = �z1 and the variational solutionz0 2 H1�0(
) of the problem�z0 = �w1; z0j�0 = 0; �z0�� j�1 = �z1j�1;satis�es z0 2 H2(
). Sine w1 2 L2(
) and z1j�1 2 H1=2(�1), this followsfrom the same ellipti regularity result as Proposition 17.Finally, [ z0w0 ℄ 2 Ker L \ Ker G if and only if w0 = 0 together with z0 2H2(
), �z0 = 0, z0j�0 = 0 and �z0�� j�1 = w0j�1 = 0 if and only if w0 = 0 andz0 = ~N0 = 0 in (7.6). Conditions of De�nition 1 are satis�ed with � = 0, andthus � = (L;G;K) is a boundary ontrol node. That also � = (�L;K;G)is suh a node, is proved by a similar argument.Lemma 3. Let the operators L, G, K and spaes Z, X be de�ned as earlierin this subsetion. Use the energy norm (7.5) for X.(i) The boundary ontrol node � = (L;G;K) assoiated to wave equation(7.4) desribes a (tory) onservative system S = [ A&BC&D ℄ through Theo-rem 1.(ii) The transfer funtion G(�) of S is inner from both sides and ana-lyti in an open set ontaining C + . The semigroups of S and thedual system Sd are strongly stable in the reduing subspae Xnu :=�Ker (Cd)� \Ker C�?, where C (Cd) denotes the observability map of S(Sd, respetively).(iii) Assume, in addition, that 
 is onneted. Then S is exatly ontrollableand observable in in�nite time, and the semigroups of S and Sd arestrongly (asymptotially) stable.Proof. For an arbitrary [ z0w0 ℄ 2 Ker G, the Green's formula [5, Lemma 1.5.3.8℄31



implies � 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re h[ z0w0 ℄ ; [ w0�z0 ℄iX= 2Re 0�h�z0; w0iL2(
) + Z
 rz0 � rw0 d
1A= 2Re 0� Z�0[�1 �z0�� w0 d!1A = 2kw0j�1k2L2(�1)beause �z0�� j�1 = w0j�1. Clearly K [ z0w0 ℄ = p2w0j�1 for all [ z0w0 ℄ 2 Ker G, andondition (i) of Theorem 7 holds. Similarly,h[ z0w0 ℄ ; L [ x0y0 ℄iX + hL [ z0w0 ℄ ; [ x0y0 ℄iX = � Z�1 �z0�� y0 d! � Z�1 w0�x0�� d! (7.7)for any [ z0w0 ℄ 2 Z and [ x0y0 ℄ 2 Ker K. On the other hand,hG [ z0w0 ℄ ; G [ x0y0 ℄iL2(�1) (7.8)= � 1p2 ��z0�� j�1; G [ x0y0 ℄�L2(�1) + 1p2 hw0j�1; G [ x0y0 ℄iL2(�1) :Sine G [ x0y0 ℄ = p2y0j�1 = �p2�x0�� j�1 for any [ x0y0 ℄ 2 Ker K, ondition (ii) ofTheorem 7 follows from (7.7) and (7.8).Let us prove laim (ii) by using the theory of onservative systems andthe lassial Sz.-Nagy { Foia�s model for ontrations. By Xu � X denotethe largest reduing subspae of the semigroup S(t) of S (generated by A =LjKer G), suh that S(t)jXu is a unitary group. By a ontinuous time ana-logue of [12, Proposition A.2℄, we have X?u = �Ker (Cd)� \Ker C�? = Xnu.By reduing the unobservable and unontrollable subspae Xu away from thestate spae X of S, we obtain another simple onservative system S 0 whosetransfer transfer funtion is same G(�) as that of S. The .n.u. semigroup ofS 0 is S(t)jXnu with generator Anu = Lj (Ker G \Xnu).Beause the inlusion Ker G � X is ompat, the resolvent of the gen-erator A is ompat with �(A) = �p(A). Beause the same holds for Anu,the intersetion �(Anu) \ iR an have only �i1 as limit points. It followsthen that G(�)�G(�) = I for almost all � 2 iR by [13, Lemma 3.2(v)℄ or[21, Corollary 7.3℄. Sine all this holds also for the dual system Sd = S bysymmetry, we onlude that the H1-funtion G(�) is inner from both sides.Sine S 0 is a tory system, the Sz.-Nagy { Foia�s harateristi funtion ofAnu satis�es �(�) = V1G(�)V2 where V1 and V2 identify unitarily the inputand output spaes U and Y with the defet spaes of Anu. Then �(�) is innerfrom both sides, and the Sz.-Nagy { Foia�s operator model [22, formula (a)on p. 279℄ for S(t)jXnu redues to the more simple Hankel range form [22,formula (a') on p. 279℄. From this it follows easily that S(t)jXnu is strongly32



stable10 on Xnu, �(Anu) \ iR = ; by the ompat resolvent, and thus G(�)is analyti outside �(Anu) � C � .It remains to prove laim (iii). Suppose we had shown that dimXu = 0.Then the semigroups of S and Sd are strongly stable, and that S itself isa simple onservative system. As G(�) is inner from both sides, its Hankeloperator has losed range, and the anonial (simple onservative) Hankelrange realization of G(�) is exatly ontrollable in in�nite time. The sameholds for S by the well-known state spae isomorphism theorem for simpleonservative systems, see e.g. [19, Chapter 11℄. By onsidering the dualsystem Sd, the exat observability of S in in�nite time follows.We proeed to show that �p(A) \ iR = ; whih learly implies dimXu =0. We already know that 0 =2 �(A) from the proof of Proposition 18. If(ir � L) [ z0w0 ℄ = 0 for r 2 R n f0g, then w0 = �irz0 2 H2(
), (r2 +�)z0 = 0,z0j�0 = 0, �z0�� j�1 = �irz0j�1. But then Green's formula implies� r2kz0kL2(
) = h�z0; z0iL2(
) = �kjrz0jkL2(
) + Z�0[�1 �z0�� z0 d!= �kjrz0jk2L2(
) + irkz0k2L2(�1):We onlude that z0 solves the Helmholtz equation(r2 +�)z0 = 0 on 
; z0j�
 = 0; �z0�� j�1 = 0; (7.9)ompare this with [23, proof of Lemma 2.1(iii)℄. Conversely, any solutionz0 2 H2(
) of (7.9) satis�es (ir � L) [ z0�irz0 ℄ = 0. Note that any solution of�z0 = �r2z0, z0j�
 = 0 in H1(
) satis�es z0 2 \s>0Hs(
) � C10 (
) as anbe seen by using the ellipti regularity result iteratively, see e.g. [10℄.To omplete the proof, we shall show that (7.9) implies11 z0 = 0. Extendthe set 
 to a larger open set 
0 by \glueing" an additional set 
00 (with anonempty interior) to the �1-part of �
. This extension an be arried outso that 
0 is onneted, it has a C2-boundary, �
0 = �0 \ �01, �0 \ �01 = ;,and �01 � �1 [ �
00. Suppose that z0 2 H10 (
) \ H2(
) satis�es (7.9), andde�ne the extended funtionsu(�) := (z0(�) for � 2 
;0 for � 2 
0 n
; uj(�) := (�z0��j (�) for � 2 
;0 for � 2 
0 n 
;and g(�) := (�z0(�) for � 2 
;0 for � 2 
0 n 
10By the Sz.-Nagy { Foia�s operator model [22, formula (a) on p. 279℄, S(t)jXnu is seento be weakly stable. This together with the ompat resolvent property implies the strongstability; the argument appearing in [23℄.11Note that this impliation does not hold, if 
 has a omponent 
0 suh that �
0\�1 =;. Indeed, the spetrum of the \Dirihlet Laplaian" on a bounded onneted set 
0 isalways nonempty, see e.g. [3℄. 33



where � = (�1; �2; : : : ; �n). Then for any test funtion � 2 D(
0) we haveZ
0 �uj d
 = Z
 ��z0��j d
 = � Z
 ����j z0 d
 = � Z
0 ����j u d
where the middle equality holds by [5, Theorem 1.5.3.1℄ beause z0j�
 = 0.It follows that eah partial (distributional) derivative of u satis�es �u��j = uj.Sine u; uj 2 L2(
0), we onlude that u 2 H1(
0). Beause �01 � �1 [ �
00,we get uj�
0 = 0 and �u�� j�01 = 0, too.Sine z0 2 H2(
), we have g 2 L2(
). Again, for any � 2 D(
0) we getZ
0 �g d
 = Z
 ��z0 d
 = Z�0[�1 ��z0�� d! � Z
 r� � rz0 d
= � Z�
 ���� z0 d! + Z
 �� � z0 d
 = Z
0 �� � u d
where both boundary terms vanish sine �j�0 = 0, �z0�� j�1 = 0, and z0j�
 = 0.We onlude that �u = g 2 L2(
0) in the sense of distributions.Sine u 2 H1(
0) and �u 2 L2(
0), the (generalised) Green's formula [5,Theorem 1.5.3.11℄ an be used as follows: for any � 2 D(
0)Z
0 ��u d
 = Z�0[�01 ��u�� d! � Z
0 r� � ru d
 = � Z
 r� � rz0 d
= � Z�0[�1 ��z0�� d! + Z
 ��z0 d
 = �r2 Z
 �z0 d
 = �r2 Z
0 �u d
:Indeed, the seond equality follows from the fats that �j�0 = 0, �u�� j�01 = 0,and that ru(�) = 0 vanishes in the interior of 
0 n 
; the seond to the lastequality holds sine �j�0 = 0 and z0 solves (7.9). We have now proved thatu 2 H10 (
0) is a (distributional) solution for the extended domain Helmholtzproblem (r2 +�)u = 0; uj�
0 = 0; �u�� j�01 = 0:As noted earlier after (7.9), it follows that u 2 C10 (
0). By using e.g. [3,Theorem 3.5℄ loally, we see that u is real analyti in 
0. By onstrution, uvanishes in the nonempty interior of the set 
00 � 
0. Sine 
0 is onneted,u vanishes in all of 
0. Hene (7.9) has only the trivial solution in H10 (
) forall r 2 R, and the proof is omplete.The exponential stability of the system S in Lemma 3 has been provedin [9, 23℄ under an additional geometri ondition on 
.34



7.5 Kirhho� beamWe next onsider the system S assoiated to the Kirhho� beam on interval[0; 1℄. The beam is lamped at the end � = 0, and we apply endpoint ontroland observation at the other end � = 1. The system is desribed by thefollowing PDE:8>>>>>>><>>>>>>>:
ztt(t; �) = �z����(t; �) for � 2 (0; 1) and t � 0;h z�t(t;1)+z��(t;1)zt(t;1)�z���(t;1) i = p2 h u1(t)u2(t) i for t � 0;p2 h y1(t)y2(t) i = h z�t(t;1)�z��(t;1)zt(t;1)+z��� (t;1) i for t � 0;z(t; 0) = z�(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.10)Again, we obtain equations of form (1.1) by using the ruleztt = �z���� =̂ ddt �zw� = � 0 1� d4d�4 0� �zw� :Consequently, we de�ne L := h 0 1� d4d�4 0 i : Z ! X together withZ := �H2f0g(0; 1) \H4(0; 1)��H2f0g(0; 1) and X := H2f0g(0; 1)� L2(0; 1);where H2f0g(0; 1) := nz 2 H1f0g(0; 1) \H2(0; 1) : z0(0) = 0o. The input andoutput operators are learly given byG [ z0w0 ℄ := 1p2 h w00(1)+z000 (1)w0(1)�z0000 (1) i and K [ z0w0 ℄ := 1p2 h w00(1)�z000 (1)w0(1)+z0000 (1) i :We leave it for an interested reader to arry out the similar arguments as inSubsetion 7.2 for the wave equation, to verify that � := (L;G;K), indeed,is a doubly boundary ontrol node. For spae X, we shall from now use thefollowing norm k [ z0w0 ℄ k2X := kz000k2L2(0;1) + kw0k2L2(0;1): (7.11)Analogously to Proposition 14, this norm is equivalent to the natural arte-sian produt norm of X.Proposition 19. Let the operators L, G, K and spaes Z, X be de�ned asas earlier in this subsetion. Use the Hilbert spae norm (7.11) for X. Then� = (L;G;K) is a onservative system, assoiated to the beam equation(7.10).Proof. As we said, showing that � is a doubly boundary ontrol node will beleft as an exerise to an interesting reader. Let [ z0w0 ℄ 2 Ker G; i.e. w0(0) =w00(0) = 0, w00(1) = �z000 (1) and w0(1) = z0000 (1). Then� 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re D[ z0w0 ℄ ; h�w0z00000 iEX= hz00000 ; w0iL2(0;1) � hz000 ; w000iL2(0;1) + hw0; z00000 iL2(0;1) � hw000 ; z000 iL2(0;1)= 2Re �z0000 (1)w0(1)� z000 (1)w00(1)� = 2 �jw0(1)j2 + jz000(1)j2�= jK [ z0w0 ℄ j2; 35



where the last equality follows sine [ z0w0 ℄ 2 Ker G. So ondition (i) ofTheorem 7 is satis�ed.Now, let [ z1w1 ℄ 2 Z and [ z2w2 ℄ 2 Ker K. Then z1(0) = z01(0) = w1(0) =w01(0) = 0, z2(0) = z02(0) = w2(0) = w02(0) = 0, w02(1) = z002 (1), and w2(1) =�z0002 (1). Using these gives by partial integrationh[ z1w1 ℄ ; L [ z2w2 ℄iX + hL [ z1w1 ℄ ; [ z2w2 ℄iX= �hz00001 ; w2iL2(0;1) + hz001 ; w002iL2(0;1) � hw1; z00002 iL2(0;1) + hw001 ; z002 iL2(0;1)= �z0001 (1)w2(1) + z001 (1)w02(1)� w1(1)z0002 (1) + w01(1)z002 (1)= �w01(1) + z001 (1)�w02(1) + �w1(1)� z0001 (1)�w2(1)= hG [ z1w1 ℄ ; G [ z2w2 ℄iC 2 ;sine G [ z2w2 ℄ = p2 h w02(1)w2(1) i for [ z2w2 ℄ 2 Ker K. Hene ondition (ii) of Theorem7 follows, and the proof is omplete.Referenes[1℄ D. Z. Arov and M. A. Nudelman. Passive linear stationary dynamialsattering systems with ontinuous time. Integral equations and operatortheory, 24:1{45, 1996.[2℄ A. Chapelon and C.-Z. Xu. Boundary ontrol of a lass of hyperbolisystems. European Journal of Control, 2003.[3℄ D. Colton and R. Kress. Integral equation methods in sattering theory.John Wiley & sons, 1983.[4℄ H. O. Fattorini. Boundary ontrol systems. SIAM J. Control, 6(3), 1968.[5℄ P. Grisvard. Ellipti problems in non-smooth domains. Pitman, 1985.[6℄ M. S. Brodski�i. On operator olligations and their harateristi fun-tions. Soviet Mat. Dokl., 12:696{700, 1971.[7℄ M. S. Brodski�i. Triangular and Jordan representations of linear oper-ators, volume 32. Amerian Mathematial Soiety, Providene, RhodeIsland, 1971.[8℄ M. S. Brodski�i. Unitary operator olligations and their harateristifuntions. Russian Math. Surveys, 33(4):159{191, 1978.[9℄ J. Lagnese. Deay of solutions of wave equations in a bounded regionwith boundary dissipation. Journal of Di�erential equations, 50:163{182, 1983.[10℄ J. L. Lions and E. Magenes. Non-homognous boundary value problemsand appliations I, volume 181 of Die Grundlehren der mathematishenWissenhaften. Springer Verlag, 1972.36
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