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ACOUSTIC WAVE GUIDES AS

INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS

Atte Aalto1, Teemu Lukkari2 and Jarmo Malinen3

Abstract. We prove the unique solvability, passivity/conservativity and some regularity results of two
mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of
finite length. The first of the models is the generalised Webster’s model that includes dissipation and
curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave
equation on 3D waveguides. The two models are treated in an unified fashion so that the results on
the wave equation reduce to the corresponding results of approximating Webster’s model at the limit
of vanishing waveguide intersection.
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1. Introduction

This is the second part of the three part mathematical study on acoustic wave propagation
in a narrow, tubular 3D domain Ω ⊂ R3. The other parts of the work are [25,26]. Our current
interest in wave guide dynamics stems from modelling of acoustics of speech production; see,
e.g., [1, 3, 13] and the references therein.

The main purpose of the present paper is to give a rigorous treatment of solvability and
energy passivity/conservativity questions of the two models for wave propagations that are
discussed in detail in [26]: these are (i) the boundary controlled wave equation on a tubular
domain, and (ii) the generalised Webster’s horn model that approximates the wave equation
in low frequencies. The a posteriori error estimate for the Webster’s model is ultimately given
in [25], and it is in an essential part based on Theorems 4.1 and 5.1 below.

The secondary purpose of this paper is to introduce the new notion of conservative majoration
for passive boundary control systems. The underlying systems theory idea is simple and easy to
explain: it is to be expected on engineering and physical grounds that adding energy dissipation
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Figure 1. The Frenet frame of the planar centreline for a tubular domain Ω,
represented by some of its intersection surfaces Γ(s) for s ∈ [0, 1]. The wall
Γ ⊂ ∂Ω is not shown, and the global coordinate system is detailed in [26, Sec-
tion 2].

to a forward time solvable (i.e., internally well-posed, typically even conservative) system cannot
make the system ill-posed, e.g., unsolvable in forward time direction. Thus, it should be enough
to treat mathematically only the lossless conservative case that “majorates” all models where
dissipation is included as far as we are not reversing the arrow of time. That this intuition holds
true for many types of energy dissipation is proved in Theorem 3.1 for boundary dissipation
and in Theorem 3.2 for a class of dissipation terms for PDE’s. These theorems are given in the
general context of boundary nodes that have been discussed in, e.g., [29, 30,42].

Early work concerning Webster’s equation can be found in [5, 40, 41, 47]. Webster’s original
work [47] was published in 1919, but the model itself has a longer history spanning over 200 years
and starting from the works of D. Bernoulli, Euler, and Lagrange. More modern approaches
are provided by [20, 21, 31–34]. Webster’s horn model is a special case of the wave equation in
a non-homogenous medium in Ω ⊂ Rn, n ≥ 1, which has been treated with various boundary
and interior point control actions in, e.g., [9, Appendix 2], [18, Section 2], [22], [37, Section 6],
and, in particular, [19, Section 7] which contains also historical remarks. There exists a rich
literature on the damped wave equation in a 1D spatial domain, and instead of trying to give
here a comprehensive account we refer to the numerous references given in [10].

The boundary of Ω ⊂ Rn, n ≥ 2, is smooth or C2 in the works cited above, which excludes
polygons (for n = 2) or their higher dimensional counterparts such as the tubular structures
discussed here. From systems theory point of view, this is a serious restriction since it is
obviously impossible to connect finitely many, disjoint, smooth domains seamlessly to each
other without leaving holes whose interior is non-empty. The generality of this article makes
it possible to interconnect 3D wave equation systems on geometrically compatible elements
Ωj ⊂ R3 to form aggregated systems on ∪jΩj in the same way as described in [2, Section 5] for
Webster’s horn model.

Theorems 4.1 and 5.1 treat the questions of unique solvability, passivity, and regularity of
the two wave propagation models in the exactly the same form as these results are required
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in the companion papers [25, 26]. The strict passivity (i.e., the case α > 0) in Theorems 4.1
and 5.1 could be proved without resorting to Theorems 3.1 and 3.2 as they both concern single
PDE’s with simple dissipation models. However, the direct approach becomes technically quite
cumbersome if we have more complicated aggregated systems to treat (not all of which need be
defined by PDE’s), and combinations of various dissipation models are involved. An example of
such systems is provided by transmission graphs as introduced in [2] where the general passive
case is treated by reducing it to the conservative case and arguing as in Theorem 3.2. In the
context of transmission graphs, see also the literature on port-Hamiltonian systems [4, 16, 46]
and the abstract boundary spaces [11]. That the conservative majoration method cannot be
used for all possible dissipation terms is shown in Section 6 by an example involving Kelvin–
Voigt structural damping.

Let us return to wave propagation models on a tubular domain Ω referring to Fig. 1. The
cross sections Γ(s) of Ω are normal to the planar curve γ = γ(s) that serves as the centreline of
Ω as shown in Fig. 1. We denote by R(s) and A(s) := πR(s)2 the radius and the area of Γ(s),
respectively. We call Γ the wall, and the circular plates Γ(0), Γ(1) the ends of the tube Ω. The
boundary of Ω satisfies ∂Ω = Γ ∪ Γ(0) ∪ Γ(1). Without loss of generality, the parameter s ≥ 0
can be regarded as the arc length of γ, measured from the control/observation surface Γ(0) of
the tube.

As is well known, acoustic wave propagation in Ω can be modelled by the wave equation for

the velocity potential φ : Ω× R+ → R as

φtt(r, t) = c2∆φ(r, t) for r ∈ Ω and t ∈ R+,

c∂φ
∂ν

(r, t) + φt(r, t) = 2
√

c
ρA(0)

u(r, t) for r ∈ Γ(0) and t ∈ R+,

φ(r, t) = 0 for r ∈ Γ(1) and t ∈ R+,

α∂φ
∂t

(r, t) + ∂φ
∂ν

(r, t) = 0 for r ∈ Γ, and t ∈ R+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω

(1.1)

with the observation defined by

c
∂φ

∂ν
(r, t)− φt(r, t) = 2

√
c

ρA(0)
y(r, t) for r ∈ Γ(0) and t ∈ R+, (1.2)

where R+ = (0,∞), R+
= [0,∞), ν denotes the unit normal vector on ∂Ω, c is the sound speed, ρ

is the density of the medium, and α ≥ 0 is a parameter associated to boundary dissipation. The
functions u and y are control and observation signals in scattering form, and the normalisation

constant 2
√

c
ρA(0)

takes care of their physical dimension which is power per area. Solvability,

stability, and energy questions for the wave equation in various geometrical domains Ω ⊂ Rn

have a huge literature, and it is not possible to give a historically accurate review here. The
wave equation is a prototypal example of a linear hyperbolic PDE whose classical mathematical
treatment can be found, e.g., in [23, Chapter 5], and the underlying physics is explained well
in [8, Chapter 9]. In the operator and mathematical system theory context, it has been given
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as an example (in various variations) in [27, 30, 43, 44, 48] and elsewhere. For applications in
speech research, see, e.g., [3, 13,26] and the references therein.

One computationally and analytically simpler wave propagation model is the generalised
Webster’s horn model for the same tubular domain Ω that is now represented by the area
function A(·) introduced above. To review this model in its generalised form, let us recall some
notions from [26]. To take into account the curvature κ(s) of the centreline γ(·) of Ω, we adjust

the sound speed c in (1.1) by defining c(s) := cΣ(s) where Σ(s) :=
(
1 + 1

4
η(s)2

)−1/2
is the

sound speed correction factor, and η(s) := R(s)κ(s) is the curvature ratio at s ∈ [0, 1]. We
also need take into consideration the deformation of the outer wall Γ by defining the stretching
factor W (s) := R(s)

√
R′(s)2 + (η(s)− 1)2; see [26, Eq. (2.8)]. It is a standing assumption that

η(s) < 1 to prevent the tube Ω from folding on itself locally.
Following [26], the generalised Webster’s horn model for the velocity potential ψ : [0, 1] ×

R+ → R is now given by

ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ

∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t

for s ∈ (0, 1) and t ∈ R+,

−cψs(0, t) + ψt(0, t) = 2
√

c
ρA(0)

ũ(t) for t ∈ R+,

ψ(1, t) = 0 for t ∈ R+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(1.3)

and the observation ỹ is defined by

−cψs(0, t)− ψt(0, t) = 2

√
c

ρA(0)
ỹ(t) for t ∈ R+. (1.4)

The constants c, ρ, α are same as in (1.1). The input and output signals ũ and ỹ of (1.3)–(1.4)
correspond to u and y in (1.1)–(1.2) by spatial averaging over the control surface Γ(0). Hence,
their physical dimension is power per area as well. Based on [25, 26], the solution ψ of (1.3)
approximates the averages

φ̄(s, t) :=
1

A(s)

∫
Γ(s)

φ dA for s ∈ (0, 1) and t ≥ 0 (1.5)

of φ in (1.1) when φ is regular enough. Note that the dissipative boundary condition α∂φ
∂ν

(r, t)+
∂φ
∂ν

(r, t) = 0 in (1.1) has been replaced by the dissipation term 2παW (s)A(s)−1c(s)2 ∂ψ
∂t

(with
the same parameter α) in (1.3). For classical work on Webster’s horn model, see [20,31,40] and
in particular [33] where numerous references can be found.

We show in Theorem 5.1 that the wave equation model (1.1)–(1.2) is uniquely solvable in both
directions of time, and the solution satisfies an energy inequality if α > 0. By Corollary 5.2,
the model has the same properties for α = 0 but then the energy inequality is replaced by an
equality, and the model is even time-flow invertible. In all cases, the solution φ is observed to
have the regularity required for the treatment given in [26] if the input u is twice continuously
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differentiable. The generalised Webster’s horn model (1.3)–(1.4) is treated in a similar manner
in Theorem 4.1.

This paper is organised as follows: Background on boundary control systems is given in Sec-
tion 2. Conservative majoration of passive boundary control systems is treated in Section 3.
The Webster’s horn model and the wave equation are treated in Sections 4 and 5 respectively.
Some immediate extensions of these results are given in Section 6. Because of the lack of acces-
sible, complete, and sufficiently general references, the paper is completed by a self-contained
appendix on Sobolev spaces, boundary trace operators, Green’s identity, and Poincaré inequal-
ity for special Lipschitz domains that are required in the rigorous analysis of typical wave guide
geometries.

2. On infinite dimensional systems

Linear boundary control systems such as (1.1) and (1.3) are treated as dynamical systems
that can be described by operator differential equations of the form

u(t) = Gz(t), ż(t) = Lz(t), with the initial condition z(0) = z0 (2.1)

and the observation equation
y(t) = Kz(t), (2.2)

where t ∈ R+
= [0,∞) denotes time. The signals in (2.1), (2.2) are as follows: u is the input,

y is the output, and the state trajectory is z.

Cauchy problems

To make (2.1) properly solvable for all twice differentiable u and compatible initial states z0,
the axioms of an internally well-posed boundary node should be satisfied:

Definition 2.1. A triple of operators Ξ = (G,L,K) is an internally well-posed boundary node
on the Hilbert spaces (U ,X ,Y) if the following conditions are satisfied:

(i) G, L, and K are linear operators with the same domain Z ⊂ X ;

(ii)
[
G
L
K

]
is a closed operator from X into U × X × Y with domain Z;

(iii) G is surjective, and ker (G) is dense in X ; and
(iv) L

∣∣
ker(G)

(understood as an unbounded operator in X with domain ker (G)) generates a

strongly continuous semigroup on X .

If, in addition, L is a closed operator on X with domain Z, we say that the boundary node Ξ
is strong.

The history of abstract boundary control system dates back to [7, 38, 39]. The phrase “in-
ternally well-posed” refers to condition (iv) of Definition 2.1, and it is a much weaker property
than well-posedness of systems in the sense of [42]. It plainly means that the boundary node
defines an evolution equation that is uniquely solvable in forward time direction. Boundary
nodes that are not necessarily internally well-posed are characterised by the weaker requirement
in place of (iv): α− L

∣∣
ker(G)

is a bijection from ker (G) onto X for some α ∈ C.
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We call U the input space, X the state space, Y the output space, Z the solution space, G
the input boundary operator, L the interior operator, and K the output boundary operator.
The operator A := L

∣∣
ker(G)

is called the semigroup generator if Ξ is internally well-posed, and

otherwise it is known as the main operator of Ξ. Because
[
G L K

]T
is a closed operator, we

can give its domain the Hilbert space structure by the graph norm

‖z‖2
Z = ‖z‖2

X + ‖Lz‖2
X + ‖Gz‖2

U + ‖Kz‖2
Y . (2.3)

If the node is strong, we have an equivalent norm for Z given by omitting the last two terms
in (2.3). If Ξ = (G,L,K) is an internally well-posed boundary node, then (2.1) has a unique
“smooth” solution:

Proposition 2.2. Assume that Ξ = (G,L,K) is an internally well-posed boundary node. For

all z0 ∈ X and u ∈ C2(R+
;U) with Gz0 = u(0) the equations (2.1) have a unique solution z ∈

C1(R+
;X ) ∩ C(R+

;Z). Hence, the output y ∈ C(R+
;Y) is well defined by the equation (2.2).

Indeed, this is [29, Lemma 2.6].

Energy balances

Now that we have treated the solvability of the dynamical equations, it remains to con-
sider energy notions. We say that the internally well-posed boundary node Ξ = (G,L,K) is
(scattering) passive if all smooth solutions of (2.1) satisfy

d

dt
‖z(t)‖2

X + ‖y(t)‖2
Y ≤ ‖u(t)‖2

U for all t ∈ R+ (2.4)

with y given by (2.2). All such systems are well-posed in the sense of [42]; see also [45]. We
say that Ξ is (scattering) energy preserving if (2.4) holds as an equality.

Many boundary nodes arising from hyperbolic PDE’s (such as (1.1)–(1.2) and (1.3)–(1.4))
have the property that they remain boundary nodes if we (i) change the sign of L (i.e., reverse
the direction of time); and (ii) interchange the roles of K and G (i.e., reverse the flow direction).
Such boundary nodes are called time-flow invertible, and we write Ξ← = (K,−L,G) for the
time-flow inverse of Ξ. There are many equivalent definitions of conservativity in the literature,
and we choose here the following:

Definition 2.3. An internally well-posed boundary node Ξ is (scattering) conservative if it
is time-flow invertible, and both Ξ itself and the time-flow inverse Ξ← are (scattering) energy
preserving.1

For system nodes that have been introduced in [28, 42], an equivalent definition for conser-
vativity is to require that both S and its dual node Sd are energy preserving. This is the
straightforward generalisation from the finite-dimensional theory but it is not very practical
when dealing with boundary control. For conservative systems, the time-flow inverse and the

1The words “energy preserving” can be replaced by “passive” without changing the class of systems one
obtains.
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dual system coincide, and we have then, in particular, A∗ = −L
∣∣
ker(K)

if A = L
∣∣
ker(G)

. For

details, see [29, Theorems 1.7 and 1.9].
It is possible to check economically, without directly using Definition 2.1, that the triple

Ξ = (G,L,K) is a dissipative/conservative boundary node:

Proposition 2.4. Let Ξ = (G,L,K) be a triple of linear operators with a common domain
Z ⊂ X , and ranges in the Hilbert spaces U , X , and Y, respectively. Then Ξ is a passive
boundary node on (U ,X ,Y) if and only if the following conditions hold:

(i) We have the Green–Lagrange inequality

2Re 〈z, Lz〉X + ‖Kz‖2
Y ≤ ‖Gz‖2

U for all z ∈ Z; (2.5)

(ii) GZ = U and (β − L)ker (G) = X for some β ∈ C+ (hence, for all β ∈ C+).

Similarly, Ξ is a conservative boundary node on (U ,X ,Y) if and only if (ii) above holds
together with the additional conditions:

(iii) We have the Green–Lagrange identity

2Re 〈z, Lz〉X + ‖Kz‖2
Y = ‖Gz‖2

U for all z ∈ Z. (2.6)

(iv) KZ = Y and (γ + L)ker (K) = X for some γ ∈ C+ (hence, for all γ ∈ C+).

This is a slight modification of [30, Theorem 2.5]; see also [29, Proposition 2.5].

3. Conservative majorants

In some applications, energy dissipation in a linear dynamical system is often caused by a
distinct part of the model such as a term or a boundary condition imposed on the defining
PDE. If this part is completely removed from the model, the resulting more simple system is
conservative and, in particular, internally well-posed. We call it a conservative majorant of the
original system.

Intuition from engineering and physics hints that increasing dissipation should make the sys-
tem “better behaved” and not spoil the internal well-posedness.2 The following Theorems 3.1
and 3.2 apply to many boundary control systems. However, they are written for passive majo-
rants since the proofs remain the same, and this way the results can be applied successively to
systems having both boundary dissipation and dissipative terms.

Theorem 3.1. Let Ξ̃ = (
[
G
G̃

]
, L,
[
K
K̃

]
) be a scattering passive boundary node on Hilbert spaces

(U ⊕ Ũ ,X ,Y ⊕ Ỹ) with solution space Z̃. Then Ξ := (G
∣∣
Z , L

∣∣
Z , K

∣∣
Z) is a scattering passive

boundary node on (U ,X ,Y) with the solution space Z := ker
(
G̃
)

. Both Ξ̃ and Ξ have the same

semigroup generator, namely L
∣∣
ker(G)∩ker(G̃). If Ξ̃ is a strong node, so is Ξ.

2The dissipativity or even the internal well-posedness of the time-flow inverted system is, if course, destroyed
since adding dissipation creates the “arrow of time”.
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Proof. The Green–Lagrange inequality holds for Ξ since for z ∈ ker
(
G̃
)

we have ‖Gz‖U =

‖
[
G
G̃

]
z‖U⊕Ũ , and hence we get by the passivity of Ξ̃

2Re 〈z, Lz〉X − ‖Gz‖2
U ≤ −‖

[
Kz
K̃z

]
‖2
Y⊕Ỹ ≤ −‖Kz‖

2
Y .

The surjectivity GZ = U follows from U ⊕ {0} ⊂ U ⊕ Ũ =
[
G
G̃

]
Z and Z = ker

(
G̃
)

. Since

(β−L)ker
(
G
∣∣
Z

)
= (β−L)

∣∣
ker(G̃)ker (G) = (β−L)

(
ker (G) ∩ ker

(
G̃
))

= (β−L)ker
([

G
G̃

])
=

X , the passivity of Ξ follows by Proposition 2.4.

Suppose that L is closed (i.e., Ξ̃ is strong) and that Z̃ ⊃ Z 3 zj → z in X is such that

Lzj → x in X as j → ∞. Because L is closed, z ∈ dom (L) = Z̃ and Lz = x. Thus,

‖zj − z‖2
Z := ‖zj − z‖2

X + ‖L(zj − z)‖2
X → 0. Because G̃ ∈ L(Z; Ũ) by applying (2.3) on Ξ̃, the

space Z = ker
(
G̃
)

is closed in Z̃ and thus z ∈ Z. We have now shown that L
∣∣
Z is closed with

dom
(
L
∣∣
Z

)
= Z. �

The restriction of the original solution space to ker
(
G̃
)

in Theorem 3.1 is a functional

analytic description of boundary dissipation of a particular kind. If the original scattering

passive Ξ̃ is translated to an impedance passive boundary node by the external Cayley-transform

(see [30, Definition 3.1]), then the abstract boundary condition by restriction to ker
(
G̃
)

can

be understood as a termination to an ideally resistive element as depicted in [30, Fig. 1].

Theorem 3.2. Let Ξ = (G,L,K) be a scattering passive boundary node on the Hilbert spaces
(U ,X ,Y) with solution space Z and X1 = ker (G) with the norm ‖z‖X1 = ‖(1− L)z‖X . Let H
be a dissipative operator on X with Z ⊂ dom (H).3 Introduce two assumptions as follows:

(i) There is a > 0 and 0 ≤ b < 1 such that ‖Hz‖X ≤ a‖z‖X + b‖Lz‖X for all z ∈ ker (G).
(ii) There is a Hilbert space X̃ such that X1 ⊂ X̃ ⊂ dom (H), the inclusion X1 ⊂ X̃ is

compact and H
∣∣
X̃ ∈ L(X̃ ;X ).

If either (i) or (ii) holds, then ΞH := (G,L + H,K) is a scattering passive boundary node.
We have dom (A) = dom (AH) where A = L

∣∣
ker(G)

and AH = (L + H)
∣∣
ker(G)

are the semigroup

generators of Ξ and ΞH , respectively. If the node Ξ is strong and H ∈ L(X ) (i.e., b = 0 in
assumption (i)), then ΞH is a strong boundary node as well.

Both the assumptions (i) and (ii) hold if H ∈ L(X ) and X1 ⊂ X with a compact inclusion. This
is the case in [2, Section 5] in the context of an impedance passive system. The compactness
property is typically a consequence of the Rellich–Kondrachov theorem [6, Theorem 1, p. 144]
for boundary nodes defined by PDE’s on bounded domains. In many applications such as
Theorem 4.1 below, the operator H is even self-adjoint. We give an example of the 1D wave
equation with Kelvin–Voigt damping in Section 6 where Theorem 3.2 cannot be applied.

3This means that H : dom (H) ⊂ X → X is an operator satisfying Z ⊂ dom (H) and Re 〈z,Hz〉X ≤ 0 for all
z ∈ Z.
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Proof. By using assumption (i): This argument is motivated by [14, Theorem 2.7 on p. 501].
Let us first show that AH := A + H

∣∣
ker(G)

with dom (AH) = ker (G) generates a contraction

semigroup on X where A = L
∣∣
ker(G)

generates the contraction semigroup of Ξ as usual. As a

first step, we establish the inequality ‖H(s− A)−1‖L(X ) < 1 for all real s large enough.
Let β > 0 be arbitrary. For all s > β and z ∈ X we have

‖H(s− A)−1z‖X ≤a‖(s− A)−1z‖X + b‖A(s− A)−1z‖X
≤(a+ βb)‖(s− A)−1z‖X

+
b

s− β

∥∥∥∥∥
(

1

s− β
− (A− β)−1

)−1

z

∥∥∥∥∥
X

(3.1)

since

−A(s− A)−1 =
1

s− β

(
1

s− β
− (A− β)−1

)−1

− β(s− A)−1.

Since A is a maximally dissipative operator on X , we have for all z = (A − β)x ∈ X with
x ∈ dom (A)

Re
〈
(A− β)−1z, z

〉
X =Re

〈
(A− β)−1(A− β)x, (A− β)x

〉
X

=Re 〈x, (A− β)x〉X
=Re 〈x,Ax〉X − β‖x‖

2
X ≤ 0.

Thus, the operator (A− β)−1 is dissipative, and it is maximally so because (A− β)−1 ∈ L(X ).
Because (A− β)−1 generates a C0 contraction semigroup on X, the Hille–Yoshida generator

theorem gives the resolvent estimate

1

s− β

∥∥∥∥∥
(

1

s− β
− (A− β)−1

)−1
∥∥∥∥∥
L(X )

≤ 1

for s > β > 0. Similarly, ‖(s− A)−1‖L(X ) ≤ 1/s for s > 0. These together with (3.1) give

‖H(s− A)−1z‖X
‖z‖X

≤ a+ βb

s
+ b < 1 for all s >

a+ βb

1− b
.

Because β > 0 was arbitrary, we get ‖H(s− A)−1‖L(X ) < 1 for all s > a
1−b . We conclude that

(a/(1− b),∞) ⊂ ρ(AH) and

(s− AH)−1 = (s− A)−1(I −H(s− A)−1)−1 (3.2)

where dom (AH) = dom (A) = ker (G). In particular, we have shown that (2a/(1 − b) − L −
H)ker (G) = X (that GZ = U holds, follows because Ξ itself is a boundary node with the same
input boundary operator G). Since the Green–Lagrange inequality (2.5) holds by the passivity
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of Ξ and Re 〈z,Hz〉X ≤ 0 by assumption, we conclude that (2.5) holds with L+H in place of
L, too. Thus ΞH is a scattering passive boundary node by Proposition 2.4.

By using assumption (ii): As in the first part of this proof, it is enough to prove that
ρ(AH) ∩ C+ 6= ∅ by verifying (3.2). Because (s − A)−1 ∈ L(X ;X1), X1 ⊂ X̃ is compact, and
H
∣∣
X̃ ∈ L(X̃ ;X ), we conclude that H(s − A)−1 ∈ L(X ) is a compact operator for all s ∈ C+.

If there is a s > 0 such that 1 /∈ σ(H(s − A)−1) ⊂ σp(H(s − A)−1) ∪ {0}, then (3.2) holds,
s ∈ ρ(AH), and ΞH is a passive boundary node as argued in the first part of the proof. For
contradiction, assume that 1 ∈ σp(H(s0 − A)−1) for some s0 > 0. This implies AHx0 = s0x0

for some x0 ∈ dom (AH), and hence

Re 〈AHx0, x0〉X = s0‖x0‖2
X > 0

which contradicts the dissipativity of AH = A + H
∣∣
ker(G)

. Thus (3.2) holds and dom (A) =

dom (AH). The final claim about strongness of ΞH holds because perturbations of closed oper-
ators by bounded operators are closed. �

The perturbation H in Theorem 3.2 is a densely defined dissipative operator on X . As such,

it has a maximally dissipative (closed) extension H̃ : dom
(
H̃
)
⊂ X → X satisfying H̃∗ ⊂ H∗,

and the adjoint H̃∗ is maximally dissipative as well. Without loss of generality we may assume

that H = H̃ in Theorem 3.2. Furthermore, it is possible to use X̃ = dom
(
H̃
)

equipped with

the graph norm ‖z‖2
dom(H̃)

= ‖z‖2
X + ‖H̃z‖2

X in assumption (ii), and it only remains to check

whether X1 ⊂ dom
(
H̃
)

compactly.

Let us consider the adjoint semigroup of the passive boundary node ΞH = (G,L + H,K),
majorated by the conservative node Ξ = (G,L,K). The adjoint semigroup is generated by the
maximally dissipative operator A∗H where AH = (L + H)

∣∣
ker(G)

is maximally dissipative under

the assumptions of Theorem 3.2.

Proposition 3.3. Let Ξ = (G,L,K) be a scattering conservative boundary node on Hilbert
spaces (U ,X ,Y) with solution space Z. Let H be a dissipative operator on X with Z ⊂ dom (H).
Assume that either of the assumptions (i) or (ii) of Theorem 3.2 holds, and let the extension

H̃ be defined as above.

(i) If ker (K) ⊂ dom
(
H̃∗
)

, then (−L+ H̃∗)
∣∣
ker(K)

⊂ A∗H .

(ii) If Z ⊂ dom
(
H̃∗
)

, then Ξ←
H̃∗

:= (K,−L+ H̃∗, G) is an internally well-posed boundary

node if and only if (−L+ H̃∗)
∣∣
ker(K)

= A∗H .

(iii) If Z ⊂ dom
(
H̃∗
)

, then Ξ←
H̃∗

is a passive boundary node if and only if (−L+H̃∗)
∣∣
ker(K)

=

A∗H .

If Ξ = (G,L,K) is conservative, so is its time-flow inverse Ξ← = (K,−L,G) by Definition 2.3.
In this case, it may be possible to use Theorem 3.2 to conclude that Ξ←

H̃∗
is a passive boundary
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node as well. If both ΞH and Ξ←
H̃∗

are passive, then they cannot be time-flow inverses of each

other unless both nodes are, in fact, conservative; i.e., H = H̃∗ = 0 on Z.

Proof. It is easy to see that A∗+ T ∗ ⊂ (A+ T )∗ holds for operators A, T on X with dom (A)∩
dom (T ) dense in X . Applying this on A = L

∣∣
ker(G)

and T := H̃
∣∣
ker(G)

we get on ker (K) the

inclusion −L
∣∣
ker(K)

+
(
H̃
∣∣
ker(G)

)∗
⊂ A∗H . Here we used A∗ = −L

∣∣
ker(K)

which holds because

Ξ = (G,L,K) is a conservative boundary node whose dual system (with semigroup generator

A∗) coincides with the time-flow inverse Ξ← = (K,−L,G). Since ker (K) ⊂ dom
(
H̃∗
)

has been

assumed, it follows that
(
H̃
∣∣
ker(G)

)∗
z = H̃∗z for all z ∈ ker (K), and claim (i) now follows.

The “only if” part of claims (ii) and (iii): By the internal well-posedness of Ξ←
H̃∗

, its main

operator (−L+ H̃∗)
∣∣
ker(K)

generates a C0 semigroup, and its resolvent set contains some right

half plane by the Hille–Yoshida theorem. By claim (i) and the fact that A∗H is (even maximally)

dissipative, it follows that (−L+H̃∗)
∣∣
ker(K)

is dissipative. But then (−L+H̃∗)
∣∣
ker(K)

is maximally

dissipative, and the converse inclusion A∗H ⊂ (−L+ H̃∗)
∣∣
ker(K)

follows.

The “if” part of claim (ii): The operator (−L+ H̃∗)
∣∣
ker(K)

generates a contraction semigroup

on X because it equals by assumption A∗H where AH itself is a generator of a contraction
semigroup by Theorem 3.2.

Equip the Hilbert space dom
(
H̃∗
)

with the graph norm of the closed operator H̃∗. Since

Z ⊂ dom
(
H̃∗
)

has been assumed, and both Z and dom
(
H̃∗
)

are continuously embedded in

X , the inclusion Z ⊂ dom
(
H̃∗
)

is continuous, too. Now H̃∗
∣∣
Z ∈ L(Z;X ) follows from H̃∗ ∈

L(dom
(
H̃∗
)

;X ). Since now −L+H̃∗ ∈ L(Z;X ), it follows that Ξ←
H̃∗

is an internally well-posed

boundary node by [29, Proposition 2.5]. (You could also argue by verifying Definition 2.1(ii)
directly.)

The “if” part of claim (iii): The “if” part of claim (ii) gives the internal well-posedness of Ξ←
H̃∗

.

To show passivity, only the Green–Lagrange inequality 2Re 〈z, (−L+H̃∗)z〉X ≤ ‖Kz‖2
Y−‖Gz‖2

U
is needed. This follows from (2.6) (by the conservativity of Ξ←) and the dissipativity of H̃∗

with Z ⊂ dom
(
H̃∗
)

(since H̃ is maximally dissipative). �

4. Generalised Webster’s model for wave guides

As proved in [26], we arrive (under some mild technical assumptions on Ω as explained
in [26, Section 3]) to the following equations for the approximate spatial averages of solutions
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of (5.1): 

ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ

∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t

for s ∈ (0, 1) and t ∈ R+,

−c(0)ψs(0, t) + ψt(0, t) = 2
√

c(0)
ρA(0)

ũ(t) for t ∈ R+,

ψ(1, t) = 0 for t ∈ R+, and

ψ(s, 0) = ψ0(s), ρψt(s, 0) = π0(s) for s ∈ (0, 1),

(4.1)

and the observation equation averages to

−c(0)ψs(0, t)− ψt(0, t) = 2

√
c(0)

ρA(0)
ỹ(t) for t ∈ R+. (4.2)

The notation has been introduced in Section 1. Analogously with the wave equation, the
solution ψ is called Webster’s velocity potential. In [25, Section 3] we add a load function

f(s, t) to obtain the PDE ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ

∂s

)
− 2παW (s)c(s)2

A(s)
∂ψ
∂t

+f(s, t) because the argument

there is based on the feed-forward connection detailed in [26, Fig. 1]. Only the boundary control
input is considered here, and it can be treated using boundary nodes.

We assume that the sound speed correction factor Σ(s) and the area function A(s) are
continuously differentiable for s ∈ [0, 1], and that the estimates

0 < min
s∈[0,1]

A(s) ≤ max
s∈[0,1]

A(s) <∞ and 0 < min
s∈[0,1]

c(s) ≤ max
s∈[0,1]

c(s) <∞ (4.3)

hold. These are natural assumptions recalling the geometry of the tubular domain Ω. Define
the operators

W :=
1

A(s)

∂

∂s

(
A(s)

∂

∂s

)
and D := −2πW (s)

A(s)
. (4.4)

The operator D should be understood as a multiplication operator on L2(0, 1) by the strictly
negative function −2πW (·)A(·)−1. Then the first of the equations in (4.1) can be cast into first
order form by using the rule

ψtt = c(s)2 (Wψ + αDψt) =̂
d

dt

[
ψ
π

]
=

[
0 ρ−1

ρc(s)2W αc(s)2D

] [
ψ
π

]
.

Henceforth, let

LW :=

[
0 ρ−1

ρc(s)2W 0

]
: ZW → XW and HW :=

[
0 0
0 c(s)2D

]
: XW → XW

where the Hilbert spaces are given by

ZW :=
(
H1
{1}(0, 1) ∩H2(0, 1)

)
×H1

{1}(0, 1), XW := H1
{1}(0, 1)× L2(0, 1)

where H1
{1}(0, 1) :=

{
f ∈ H1(0, 1) : f(1) = 0

}
.
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Clearly we have HW ∈ L(XW ), H∗W = HW , and this operator is negative in the sense that

〈HW [ z1z2 ] , [ z1z2 ]〉XW = −2π
∫ 1

0
|z2(s)|2W (s)c(s)2A(s)−1 ds ≤ 0. So, the operator αHW for α > 0

satisfies assumption (i) of Theorem 3.2 with b = 0 and also assumption (ii) of the same theorem
with X̃ = X .

The Hilbert spaces ZW and XW are equipped with the norms

‖[ z1z2 ]‖2
ZW := ‖z1‖2

H2(0,1) + ‖z2‖2
H1(0,1) and

‖[ z1z2 ]‖2
H1(0,1)×L2(0,1) := ‖z1‖2

H1(0,1) + ‖z2‖2
L2(0,1),

respectively. We will use the energy norm on XW , which for any ρ > 0 is defined by

‖ [ z1z2 ] ‖2
XW :=

1

2

(
ρ

∫ 1

0

|z′1(s)|2A(s) ds+
1

ρc2

∫ 1

0

|z2(s)|2A(s)Σ(s)−2 ds

)
. (4.5)

This is an equivalent norm for XW because the conditions (4.3) hold and
√

2‖z1‖L2(0,1) ≤
‖z′1‖L2(0,1) for all z1 ∈ H1

{1}(0, 1). To see that the Poincaré inequality holds in H1
{1}(0, 1), note

that for smooth functions z with z(1) = 0, one has from the fundamental theorem of calculus
that

|z(s)| =
∣∣∣∣∫ 1

s

z′(t) dt

∣∣∣∣ ≤ (1− s)1/2‖z′‖L2(0,1).

From this, we proceed by squaring and integrating with respect to s, and then passing to general
Sobolev functions by approximation.

We define UW := C with the absolute value norm ‖u0‖UW := |u0|. The endpoint control and
observation functionals GW : ZW → UW and KW : ZW → UW are defined by

GW [ z1z2 ] :=
1

2

√
A(0)

ρc(0)
(−ρc(0)z′1(0) + z2(0)) and

KW [ z1z2 ] :=
1

2

√
A(0)

ρc(0)
(−ρc(0)z′1(0)− z2(0)) .

Now the generalised Webster’s horn model (4.1)–(4.2) for the state z(t) =
[
ψ(t)
π(t)

]
takes the form

d
dt

[
ψ(t)
π(t)

]
= (LW + αHW )

[
ψ(t)
π(t)

]
,

ũ(t) = GW

[
ψ(t)
π(t)

]
,

(4.6)

and

ỹ(t) = KW

[
ψ(t)
π(t)

]
(4.7)

for all t ∈ R+
. The initial conditions are

[
ψ(0)
π(0)

]
=
[
ψ0
π0

]
. The state variable π = ρψt has the

dimension of pressure, as in the case of the wave equation.
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The impedance passive version of the following Theorem 4.1 is given in [2, Theorem 5.1], and
it would be possible to deduce parts of Theorem 4.1 from that result using the external Cayley
transform [30, Definition 3.1]. Here we give a direct proof instead.

Theorem 4.1. Let the operators LW , HW , GW , KW , and spaces ZW , XW , UW be defined as

above. Let
[
ψ0
π0

]
∈ ZW and ũ ∈ C2(R+

;C) such that the compatibility condition GW

[
ψ0
π0

]
= ũ(0)

holds. Then for all α ≥ 0 the following holds:

(i) The triple Ξ
(W )
α := (GW , LW +αHW , KW ) is a scattering passive, strong boundary node

on Hilbert spaces (UW ,XW ,UW ).

The semigroup generator AW,α = (LW + αHW )
∣∣
ker(GW )

of Ξ
(W )
α satisfies A∗W,α =

(−LW + αHW )
∣∣
ker(KW )

and 0 ∈ ρ(AW,α) ∩ ρ(A∗W,α).

(ii) The equations in (4.6) have a unique solution [ ψπ ] ∈ C1(R+
;XW )∩C(R+

;ZW ). Hence

we can define ỹ ∈ C(R+
;C) by equation (4.7).

(iii) The solution of (4.6) satisfies the energy dissipation inequality

d

dt
‖
[
ψ(t)
π(t)

]
‖2
XW ≤ |ũ(t)|2 − |ỹ(t)|2 , t ∈ R+. (4.8)

Moreover, Ξ
(W )
0 is a conservative boundary node, and (4.8) holds then as an equality.

Under the assumptions of this proposition, we have ψ ∈ C(R+
;H2(0, 1)) ∩ C1(R+

;H1(0, 1)) ∩
C2(R+

;L2(0, 1)).

Proof. Claim (i): By Theorem 3.2, it is enough to show the conservative case α = 0. Let us
first verify the that the Green–Lagrange identity

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW + |KW [ z1z2 ]|2 = |GW [ z1z2 ]|2 (4.9)

holds for all [ z1z2 ] ∈ ZW . By partial integration, we get

2Re 〈[ z1z2 ] , LW [ z1z2 ]〉XW = −A(0)Re
(
z′1(0)z2(0)

)
.

Now (4.9) follows since |GW [ z1z2 ]|2 − |KW [ z1z2 ]|2 = −A(0)Re
(
z′1(0)z2(0)

)
just as in equations

(5.14) – (5.15).
It is trivial that GWZW = KWZW = UW since dimUW = 1 and neither of the operators

GW and KW vanishes. We prove next that LW maps ker (GW ) bijectively onto XW . Now,
[ z1z2 ] ∈ ker (GW ) and [ w1

w2 ] ∈ XW satisfy LW [ z1z2 ] = [ w1
w2 ] if and only if z2 = ρw1 and

∂

∂s

(
A(·)∂z1

∂s

)
=
A(·)w2

ρc(·)2
, z1(1) = 0, z′1(0) =

w1(0)

c(0)
.

Since this equation has always a unique solution z1 ∈ H2(0, 1) for any w1 ∈ H1
{1}(0, 1) and

w2 ∈ L2(0, 1), it follows that LWker (GW ) = XW and 0 ∈ ρ(AW,0) where AW,0 = LW
∣∣
ker(GW )

is
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the semigroup generator of Ξ
(W )
0 . We conclude by Proposition 2.4 that Ξ

(W )
0 is a conservative

boundary node as claimed. That Ξ
(W )
α is passive for α > 0 with semigroup generator AW,α =

(LW + αHW )
∣∣
ker(GW )

follows by Theorem 3.2.

Because H∗W = HW ∈ L(X ) is dissipative, we may apply Theorem 3.2 again to the time-

flow inverted, conservative node
(

Ξ
(W )
0

)←
= (KW ,−LW , GW ) to conclude that the boundary

node (KW ,−LW + αH∗W , GW ) is passive as well. Claim (iii) of Proposition 3.3 implies that
A∗W,α = (−LW + αHW )

∣∣
ker(KW )

.

Let us argue next that 0 ∈ ρ(AW,α)∩ρ(A∗W,α) for α > 0. Because AW,α is a compact resolvent
operator, it is enough to exclude 0 ∈ σp(AW,α). Suppose AW,αz0 = 0, giving Re 〈AW,0z0, z0〉X +
Re 〈αHW z0, z0〉X = Re 〈AW,αz0, z0〉X = 0. Thus

Re 〈AW,0z0, z0〉X = αRe 〈−HW z0, z0〉X = α‖(−HW )1/2z0‖2
X = 0

by the dissipativity of both AW,0 and HW , and the fact that −HW is a self-adjoint nonnegative
operator. Thus z0 ∈ ker (HW ) and hence AW,0z0 = (AW,0 + αHW )z0 = AW,αz0 = 0. Because
0 ∈ ρ(AW,0) has already been shown, we conclude that z0 = 0.

The node Ξ
(W )
0 is strong (i.e., LW is closed with dom (LW ) = ZW ) since LW = L∗∗W . Indeed,

we have L∗W = −LW
∣∣
dom(L∗W ) where

dom (L∗W ) =
{

[ w1
w2 ] ∈ H1

{1}(0, 1) ∩H2(0, 1)×H1
0 (0, 1) : ∂w1

∂s
(0) = 0

}
which is dense in XW and satisfies dom (L∗W ) ⊂ dom (LW ). That Ξ

(W )
α is strong for α > 0

follows from HW ∈ L(X ) as explained in Theorem 3.2.
Claims (ii) and (iii) follow from Proposition 2.2 and Eq. (2.4). �

5. Passive wave equation on wave guides

Define the tubular domain Ω ⊂ R3 and its boundary components Γ, Γ(0), and Γ(1) as in
Section 1. Each of the sets Γ, Γ(0), and Γ(1) are smooth manifolds but ∂Ω = Γ ∪ Γ(0) ∪ Γ(1)
is only Lipschitz. Other relevant properties of Ω and ∂Ω are listed in (i) – (iii) of Appendix A
where we also make rigorous sense of the Sobolev spaces, boundary trace mappings, Poincaré
inequality, and the Green’s identity for such domains.

Following [26, Section 3], we consider the linear dynamical system described by

φtt(r, t) = c2∆φ(r, t) for r ∈ Ω and t ∈ R+,

c∂φ
∂ν

(r, t) + φt(r, t) = 2
√

c
ρA(0)

u(r, t) for r ∈ Γ(0) and t ∈ R+,

φ(r, t) = 0 for r ∈ Γ(1) and t ∈ R+,
∂φ
∂ν

(r, t) + αφt(r, t) = 0 for r ∈ Γ, and t ∈ R+, and

φ(r, 0) = φ0(r), ρφt(r, 0) = p0(r) for r ∈ Ω,

(5.1)
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together with the observation y defined by

c
∂φ

∂ν
(r, t)− φt(r, t) = 2

√
c

ρA(0)
y(r, t) for r ∈ Γ(0) and t ∈ R+. (5.2)

This model describes acoustics of a cavity Ω that has an open end at Γ(1) and an energy
dissipating wall Γ. The solution φ is the velocity potential as its gradient is the perturbation
velocity field of the acoustic waves. The boundary control and observation on surface Γ(0)
(whose area is A(0)) are both of scattering type. The speed of sound is denoted by c > 0. The
constants α ≥ 0 and ρ > 0 have physical meaning but we refer to [26] for details. Note that if
α = 0, we have the Neumann boundary condition modelling a hard, sound reflecting boundary
on Γ. Our purpose is to show that (5.1)–(5.2) defines a passive boundary node (conservative,
if α = 0 by a slightly different argument in Corollary 5.2) by using Theorem 3.1 with the aid of
the additional signals ũ := 1√

α
∂φ
∂ν

+
√
αφt (that will be grounded) and ỹ := 1√

α
∂φ
∂ν
−
√
αφt (that

will be disregarded) on the wall Γ.
The boundedness of the Dirichlet trace implies that the space

H1
Γ(1)(Ω) :=

{
f ∈ H1(Ω) : f

∣∣
Γ(1)

= 0
}
. (5.3)

is a closed subspace of H1(Ω). Define

Z̃ ′ := {f ∈ H1
Γ(1)(Ω) : ∆f ∈ L2(Ω),

∂f

∂ν

∣∣
Γ(0)∪Γ

∈ L2(Γ(0) ∪ Γ)} (5.4)

with the norm ‖f‖2
Z̃′ = ‖f‖2

H1(Ω) + ‖∆f‖2
L2(Ω) + ‖∂f

∂ν

∣∣
Γ(0)∪Γ

‖2
L2(Γ(0)∪Γ). Then the operator

∂

∂ν

∣∣
Γ′

: f 7→ ∂f

∂ν

∣∣
Γ′

lies in L(Z̃ ′;L2(Γ′)) for Γ′ ∈ {Γ(0),Γ,Γ(0) ∪ Γ}. (5.5)

The spaces Z̃, X , and the interior operator L are defined by

L :=
[

0 ρ−1

ρc2∆ 0

]
: Z̃ → X with

Z̃ := Z̃ ′ ×H1
Γ(1)(Ω) and X := H1

Γ(1)(Ω)× L2(Ω)
(5.6)

where H1
Γ(1)(Ω) and Z̃ ′ are given by (5.3) and (5.4). For the space X , we use the energy norm,

which is defined by

‖ [ z1z2 ] ‖2
X :=

1

2

(
ρ‖|∇z1|‖2

L2(Ω) +
1

ρc2
‖z2‖2

L2(Ω)

)
. (5.7)

The Poincaré inequality ‖z1‖L2(Ω) ≤ MΩ‖∇z1‖L2(Ω) holds for z1 ∈ H1
Γ(1)(Ω) as given in The-

orem A.4 in Appendix A. Therefore (5.7) defines a norm on X , equivalent to the Cartesian
product norm

‖ [ z1z2 ] ‖2
H1(Ω)×L2(Ω) := ‖z1‖2

L2(Ω) + ‖∇z1‖2
L2(Ω) + ‖z2‖2

L2(Ω)
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so that Z̃ ⊂ X with a continuous embedding, and L ∈ L(Z̃;X ) with respect to the Z̃-norm

‖ [ z1z2 ] ‖2
Z̃ := ‖z1‖2

Z̃′ + ‖z2‖2
L2(Ω) + ‖∇z2‖2

L2(Ω).

Defining U := L2(Γ(0)) and Ũ := L2(Γ) with the norms

‖u0‖2
U = A(0)−1‖u0‖2

L2(Γ(0)) and ‖ũ0‖Ũ = ‖ũ0‖L2(Γ), (5.8)

we get U ⊕ Ũ = L2(Γ(0) ∪ Γ) where we use the Cartesian product norm of U and Ũ .
The boundedness of the Dirichlet trace and the property (5.5) of the Neumann trace imply

that
[
G
Gα

]
∈ L(Z̃;U ⊕ Ũ) and

[
K
Kα

]
∈ L(Z̃;U ⊕ Ũ) where

[
G
Gα

] [
z1

z2

]
:=

1

2

√A(0)
ρc

(
ρc∂z1

∂ν

∣∣
Γ(0)

+ z2

∣∣
Γ(0)

)
√
ρ√
α
∂z1
∂ν

∣∣
Γ

+
√
α√
ρ
z2

∣∣
Γ

 and

[
K
Kα

] [
z1

z2

]
:=

1

2

√A(0)
ρc

(
ρc∂z1

∂ν

∣∣
Γ(0)
− z2

∣∣
Γ(0)

)
√
ρ√
α
∂z1
∂ν

∣∣
Γ
−
√
α√
ρ
z2

∣∣
Γ

 .
(5.9)

The reason for defining the triple Ξ̃α := (
[
G
Gα

]
, L,
[
K
Kα

]
) is to obtain first order equations

from (5.1), using the equivalence of φtt = c2∆φ and d
dt

[
φ
p

]
=
[

0 ρ−1

ρc2∆ 0

] [
φ
p

]
where p = ρφt

is the sound pressure. More precisely, equations (5.1)–(5.2) are (at least formally) equivalent
with 

d
dt

[
φ(t)

p(t)

]
= L

[
φ(t)

p(t)

]
,[

u(t)

0

]
=

[
G

Gα

][
φ(t)

p(t)

]
,

(5.10)

and [
y(t)
ỹ(t)

]
=

[
K
Kα

] [
φ(t)
p(t)

]
(5.11)

for t ∈ R+
, with the initial conditions

[
φ(0)
p(0)

]
=
[
φ0
p0

]
. The Green–Lagrange identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖
[
K
Kα

]
[ z1z2 ]‖2

U⊕Ũ = ‖
[
G
Gα

]
[ z1z2 ]‖2

U⊕Ũ for all [ z1z2 ] ∈ Z̃ (5.12)
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is a key fact for proving the conservativity of Ξ̃α, and we verify it next. Green’s identity
(Theorem A.3 in Appendix A) gives

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X = 2Re
〈

[ z1z2 ] ,
[
ρ−1z2
ρc2∆z1

]〉
X

= 2Re
1

2

(
ρ

∫
Ω

∇z1 · ∇(z2/ρ) dV +
1

ρc2

〈
ρc2∆z1, z2

〉
L2(Ω)

)
= Re

(∫
Γ(0)∪Γ∪Γ(1)

∂z1

∂ν
z2 dA

)
= Re

〈
∂z1

∂ν

∣∣
Γ(0)

, z2

∣∣
Γ(0)

〉
L2(Γ(0))

+ Re

〈
∂z1

∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ)

(5.13)

because z2

∣∣
Γ(1)

= 0 by (5.6). On the other hand, we obtain

‖G [ z1z2 ]‖2
U = A(0)−1 〈G [ z1z2 ] , G [ z1z2 ]〉L2(Γ(0)) (5.14)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1

∂ν

∣∣
Γ(0)

∥∥∥∥2

L2(Γ(0))

+ 2ρcRe

〈
∂z1

∂ν

∣∣
Γ(0)

, z2

∣∣
Γ(0)

〉
L2(Γ(0))

+
∥∥∥z2

∣∣
Γ(0)

∥∥∥2

L2(Γ(0))

)
and also

‖K [ z1z2 ]‖2
U = A(0)−1 〈K [ z1z2 ] , K [ z1z2 ]〉L2(Γ(0)) (5.15)

=
1

4ρc

(
ρ2c2

∥∥∥∥∂z1

∂ν

∣∣
Γ(0)

∥∥∥∥2

L2(Γ(0))

− 2ρcRe

〈
∂z1

∂ν

∣∣
Γ(0)

, z2

∣∣
Γ(0)

〉
L2(Γ(0))

+
∥∥∥z2

∣∣
Γ(0)

∥∥∥2

L2(Γ(0))

)
,

where G [ z1z2 ] and K [ z1z2 ] are the first components in (5.9) respectively.
Similarly, we compute the two terms needed in

‖Gα [ z1z2 ]‖2
Ũ − ‖Kα [ z1z2 ]‖2

Ũ (5.16)

= 〈Gα [ z1z2 ] , Gα [ z1z2 ]〉L2(Γ) − 〈Kα [ z1z2 ] , Kα [ z1z2 ]〉L2(Γ) = Re

〈
∂z1

∂ν

∣∣
Γ
, z2

∣∣
Γ

〉
L2(Γ)

,

where Gα [ z1z2 ] and Kα [ z1z2 ] are the second components in (5.9) respectively. Now (5.13) – (5.16)
implies (5.12) as required.

We proceed to show that the the triple Ξα := (G
∣∣
Zα
, L
∣∣
Zα
, K
∣∣
Zα

) for all α > 0 is a scattering

passive boundary node on Hilbert spaces (U ,X ,U) with the solution space

Zα :=

{[
z1

z2

]
∈ Z̃ ′ ×H1

Γ(1)(Ω) :
∂z1

∂ν

∣∣
Γ

+
α

ρ
z2

∣∣
Γ

= 0

}
. (5.17)

Note that Zα is a closed subspace of Z̃ because Gα ∈ L(Z̃; Ũ) and Zα = ker (Gα). Therefore,
we can use the norm of Z̃ on Zα. The conservative case α = 0 is slightly different, and it is
treated separately in Corollary 5.2.
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Theorem 5.1. Take α > 0 and let the operators L, G, K, and Hilbert spaces X , U , and Zα
be defined as above. Let

[
φ0
p0

]
∈ Zα and u ∈ C2(R+

;U) be such that the compatibility condition

G
[
φ0
p0

]
= u(0) holds. Then the following hold:

(i) The triple Ξα := (G
∣∣
Zα
, L
∣∣
Zα
, K
∣∣
Zα

) is a scattering passive boundary node on Hilbert

spaces (U ,X ,U) with solution space Zα. The semigroup generator Aα = L
∣∣
ker(G)∩ker(Gα)

of Ξα satisfies A∗α = −L
∣∣
ker(K)∩ker(Kα)

and 0 ∈ ρ(Aα) ∩ ρ(A∗α).

(ii) The equations4 in (5.10) have a unique solution
[
φ
p

]
∈ C1(R+

;X )∩C(R+
;Zα) satisfying

φ(0) = φ0 and p(0) = p0. Hence we can define y ∈ C(R+
;U) by equation (5.11).

(iii) The solutions of (5.10) satisfy the energy dissipation inequality

d

dt
‖
[
φ(t)
p(t)

]
‖2
X ≤ ‖u(t)‖2

U − ‖y(t)‖2
U , t ∈ R+. (5.18)

It follows from claim (ii) and the definition of the norms of Zα and X that φ ∈ C1(R+
;H1(Ω))∩

C2(R+
;L2(Ω)), ∇φ ∈ C1(R+

;L2(Ω;R3)), and ∆φ ∈ C(R+
;L2(Ω)). These are the same smooth-

ness properties that have been used in [26, see, in particular, Eq. (1.4)] for deriving the gener-
alised Webster’s equation in (1.3) from the wave equation.

Proof. Claim (i): By Theorem 3.1 and the discussion preceding this theorem, it is enough to

show that Ξ̃α = (
[
G
Gα

]
, L,
[
K
Kα

]
) introduced above is a conservative boundary node which is

easiest done by using Proposition 2.4. Since the Green–Lagrange identity (2.6) has already
been established, it remains to prove conditions (ii) (with

[
G
Gα

]
in place of G) and (iv) (with[

K
Kα

]
in place of K) of Proposition 2.4 with β = γ = 0. It is enough to consider only β = γ = 0

because the resolvent sets of L
∣∣
ker(G)

and −L
∣∣
ker(K)

in Proposition 2.4 are open, and then the

same conditions hold for some β, γ > 0 as well.
For an arbitrary g ∈ L2(Γ(0) ∪ Γ) there exists a unique variational5 solution z1 ∈ H1

Γ(1)(Ω)
of the problem

∆z1 = 0, z1

∣∣
Γ(1)

= 0,
∂z1

∂ν

∣∣
Γ(0)∪Γ

= g. (5.19)

Since z1 ∈ Z̃ ′, we have ∂
∂ν

∣∣
Γ(0)∪Γ

Z̃ ′ = L2(Γ(0) ∪ Γ) which obviously gives both ∂
∂ν

∣∣
Γ(0)
Z̃ ′ =

L2(Γ(0)) and ∂
∂ν

∣∣
Γ
Z̃ ′ = L2(Γ). Clearly Z̃ ′ ⊕ {0} ⊂ Z̃ and the surjectivity of

[
G
Gα

]
follows from

[
G
Gα

] [
z1

0

]
:=

1

2

[√
A(0)ρc ∂

∂ν

∣∣
Γ(0)√

ρ√
α
∂
∂ν

∣∣
Γ

]
z1.

4Note that (2.1) is equivalent with (5.1) and (5.10) in the context of this theorem.
5We leave it to the interested reader to derive the variational form using Green’s identity (A.9) and then

carry out the usual argument by the Lax–Milgram theorem; see, e.g., [12, Lemma 2.2.1.1].
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To see this, for a given h ∈ L2(Γ(0) ∪ Γ), we choose

g =

2 1√
A(0)ρc

h, on Γ(0),

2
√
α√
ρ
h, on Γ

in (5.19) to find a function z1 so that
[
G
Gα

]
[ z10 ] = h. The surjectivity of

[
K
Kα

]
is proved similarly.

To show that Lker
([

G
Gα

])
= L (ker (G) ∩ ker (Gα)) = X , let [ w1

w2 ] ∈ X be arbitrary. Then

[ w1
w2 ] = L [ z1z2 ] =

[
ρ−1z2
ρc2∆z1

]
for [ z1z2 ] ∈ ker (G)∩ker (Gα) if and only if z2 = ρw1 and the variational

solution z1 ∈ H1
Γ(1)(Ω) of the problem

ρc2∆z1 = w2, z1

∣∣
Γ(1)

= 0,
∂z1

∂ν

∣∣
Γ

= −αρw1

∣∣
Γ
, c

∂z1

∂ν

∣∣
Γ(0)

= −w1

∣∣
Γ(0)

exists and belongs to the space Z ′. This condition can be verified by standard variational
techniques because w2 ∈ L2(Ω) and w1 ∈ H1

Γ(1)(Ω) which implies w1

∣∣
Γ(0)∪Γ

∈ H1/2(Γ(0) ∪ Γ) ⊂
L2(Γ(0) ∪ Γ). That Lker

([
K
Kα

])
= X is proved similarly. All the conditions of Proposition 2.4

are now satisfied with β = γ = 0, and thus Ξ̃α is a conservative boundary node. It follows from
Theorem 3.1 that Ξα is a passive boundary node which has the common semigroup generator
Aα = L

∣∣
ker(G)∩ker(Gα)

with the original conservative boundary node Ξ̃α. By [29, Theorem 1.9 and

Proposition 4.3], the dual system of Ξ̃α is of boundary control type, and it coincides with the

time-flow inverted boundary node Ξ̃←α . The unbounded adjoint A∗α is the semigroup generator

of the dual system Ξ̃←α , and hence A∗α = −L
∣∣
ker(K)∩ker(Kα)

as claimed.

It remains to show that 0 /∈ σ(Aα). We have already shown above that Aαdom (Aα) = X
with dom (Aα) = ker (G) ∩ ker (Gα), and the remaining injectivity part follows if we show that
ker (L) ∩ ker (G) ∩ ker (Gα) = {0}. This follows because the variational solution in H1(Ω) of
the homogenous problem

∆z1 = 0, z1

∣∣
Γ(1)

= 0,
∂z1

∂ν

∣∣
Γ(0)∪Γ

= 0

is unique. That 0 /∈ σ(A∗α) follows similarly by considering the time-flow inverted system Ξ̃←α
instead.

Claims (ii) and (iii): Since scattering passive boundary nodes are internally well-posed, it
follows from, e.g., [29, Lemma 2.6] that equations (2.1) are solvable, as has been explained in
Section 2. �

Corollary 5.2. Use the same notation and make the same assumptions as in Theorem 5.1.
If α = 0, then claims (i) — (iii) of Theorem 5.1 hold in the stronger form: (i’) the triple
Ξ0 := (G

∣∣
Z0
, L
∣∣
Z0
, K
∣∣
Z0

) is a scattering conservative boundary node on Hilbert spaces (U ,X ,U)
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with the solution space Z0 := Z̃ ′0 ×H1
Γ(1)(Ω) where

Z̃ ′0 := {f ∈ H1
Γ(1)(Ω) : ∆f ∈ L2(Ω),

∂f

∂ν

∣∣
Γ(0)
∈ L2(Γ(0)),

∂f

∂ν

∣∣
Γ

= 0}; (5.20)

and (iii’) the energy inequality (5.18) holds as an equality.

Claim (ii) of Theorem 5.1 remains true without change. Thus, the solution φ has the same
regularity properties as listed right after Theorem 5.1.

Proof. Because the operators Gα and Kα refer to 1/
√
α, we cannot simply set α = 0 in the proof.

This problem could be resolved by making the norm of Ũ dependent on α which we want to

avoid. A direct argument can be given without ever defining Ξ̃α. To prove the Green–Lagrange
identity

2Re 〈[ z1z2 ] , L [ z1z2 ]〉X + ‖K [ z1z2 ]‖2
U = ‖G [ z1z2 ]‖2

U for all [ z1z2 ] ∈ Z̃0 (5.21)

for Ξ0, one simply omits the last term on the right hand side of (5.13) by using the Neumann
condition ∂z1

∂ν

∣∣
Γ

= 0 from (5.20). Then (5.21) follows from (5.13)—(5.15), leading ultimately to
(5.18) with an equality. The remaining parts of claim (i’) follow by the argument given in the
proof of Theorem 5.1. �

This result generalises the reflecting mirror example in [29, Section 5], and further generali-
sations are given in Section 6.

6. Conclusions and generalisations

We have given a unified treatment of a 3D wave equation model on tubular structures and
the corresponding Webster’s horn model in the form it is derived and used in [25, 26]. Both
the forward time solvability and the energy inequalities have been treated rigorously, and the
necessary but hard-to-find Sobolev space apparatus was presented in Appendix A. The strictly
dissipative case was reduced to the conservative case using auxiliary Theorems 3.1 and 3.2 that
have independent interest.

Theorem 5.1 can be extended and generalised significantly using only the techniques presented
in this work. Firstly, a dissipation term, analogous with the one appearing in Webster’s equation
(4.1), can be added to the wave equation part of (5.1) while keeping rest of the model the same:

Corollary 6.1. Theorem 5.1 remains true if the wave equation φtt = c2∆φ in (5.1) is replaced
by φtt = c2∆φ+ g(·)φt where g is a smooth function satisfying g(r) ≤ 0 for all r ∈ Ω.

Indeed, this follows by using Theorem 3.2 on the result of Theorem 5.1 in the same way as
has been done in Section 4. Even now the resulting negative perturbation H on the original
interior operator L in (5.6) satisfies H ∈ L(X ). The same dissipation term can, of course, be
added to Corollary 5.2 (where α = 0) as well but then the resulting boundary node is only
passive unless g ≡ 0.

Theorem 5.1 can be generalised to cover much more complicated geometries Ω ⊂ R3 than
tube segments with circular cross-sections. Inspecting the construction of the boundary node
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Ξα and the accompanying Hilbert spaces in Section 5, it becomes clear that much more can be
proved at the cost of more complicated notation but nothing more:

Corollary 6.2. Let Ω ⊂ R3 be a bounded Lipschitz domain satisfying standing assumptions (i)
– (iv) in Appendix A. Denote the smooth boundary components of Ω by Γj where j ∈ J ⊂ N
satisfying ∂Ω = ∪j∈JΓj. Let J = J1 ∪ J2 ∪ J3 where the sets are pairwise disjoint, and at least
J1and J3 are nonempty. Define the open Lipschitz surfaces Γ(0),Γ,Γ(1) ⊂ ∂Ω through their

closures Γ(0) = ∪j∈J1Γj, Γ = ∪j∈J2Γj, and Γ(1) = ∪j∈J3Γj, respectively. Let α = {αj}j∈J2 ⊂
(−∞, 0] be a vector of dissipation parameters.

Then the wave equation model (5.1) with equations

αj
∂φ

∂t
(r, t) +

∂φ

∂ν
(r, t) = 0 for all r ∈ Γj, t ≥ 0, and j ∈ J2

in place of the fourth equation in (5.1) defines the boundary node Ξα and the Hilbert spaces X ,
U , and Zα in a same way as presented in Section 5. Moreover, Theorem 5.1 and Corollary 5.2
(where αj = 0 for all j ∈ J2) hold without change.

In particular, the set Ω may be an union of a finite number of tubular domains described in
Section 1. Even loops are possible and the interior domain dissipation can be added just like
in Corollary 6.1. This configuration can be found in the study of the spectral limit behaviour
of Neumann–Laplacian on graph-like structures in [15,35].

Comments on the proof. The argument in Section 5 defines Ξα, the Hilbert spaces X , U , and
Zα, and the Green–Lagrange identity by splitting ∂Ω into three smooth components and patch-
ing things up using the results of Appendix A. The same can be done on any finite number of
components since the results of Appendix A are sufficiently general to allow it. The solvability
of the variational problems in the proof of Theorem 5.1 do not depend on the number of such
boundary components either. �

There is nothing in Section 5 that would exclude the further generalisation to Ω ⊂ Rn for
any n ≥ 2 if standing assumptions (i) – (iv) in Appendix A remain true. If n = 2 and Ω is
a curvilinear polygon (i.e., it is simply connected), the necessary PDE toolkit can be found
in [12, Section 1].

Also Theorem 4.1 has extensions but not as many as Theorem 5.1. Firstly, the nonnegative
constant α can be replaced by a nonnegative function α(·) ∈ C[0, 1] since the s-dependency
is already present in the operator D in (4.4). Secondly, strong boundary nodes described by
Theorem 4.1 can be scaled to different interval lengths and coupled to finite transmission graphs
as explained in [2] for impedance passive component systems. The full treatment of a simple
transmission graph, consisting of three Webster’s horn models in Y-configuration, has been
given in [2, Theorem 5.2]. More general finite configurations can be treated similarly, and the
resulting impedance passive system can be translated to a scattering passive system by the
external Cayley transform [30, Section 3], thus producing a generalisation of Theorem 4.1. We
note that there is not much point in trying to derive the transmission graph directly from
scattering passive systems since the continuity equation (for the pressure) and Kirchhoff’s law
(for the conservation of flow) at each node is easiest described by impedance notions.



TITLE WILL BE SET BY THE PUBLISHER 23

That Theorem 3.2 cannot be used for all possible dissipation terms is seen by considering
the wave equation with Kelvin–Voigt structural damping term

ψtt = c2ψss +
∂

∂s

(
β(s)

∂

∂s
ψt

)
where β(s) ≥ 0. (6.1)

For details of this dissipation model, see, e.g., [24]. To obtain the full dynamical system analo-
gous to the one associated with Webster’s equation, the same boundary and initial conditions
can be used as in (1.3) for β ∈ C∞[0, 1] compactly supported (0, 1). Thus the operators GW

and KW do not change. Following Section 4 we use the velocity potential and the pressure as
state variables [ ψπ ]. We define the Hilbert spaces ZW and XW similarly as well as the operators

LW :=

[
0 ρ−1

ρc2 ∂2

∂s2
0

]
: ZW → XW and

H̃ :=

[
0 0
0 ∂

∂s

(
β(s) ∂

∂s

)] : dom
(
H̃
)
⊂ XW → XW

where dom
(
H̃
)

:= H1
{1}(0, 1)× {f ∈ L2(0, 1) : β(s)∂f

∂s
∈ H1(0, 1)}. The physical energy norm

for XW is given by (4.5) with A(s) = Σ(s) ≡ 1 representing a constant diameter straight tube.
If the parameter β ≡ 0, the colligation (GW , LW , KW ) is a special case of the conservative

system Ξ
(W )
0 described in Theorem 4.1. Clearly, the domain of H̃ cannot be further extended

without violating the range inclusion in XW . On the other hand, the inclusion Z ⊂ dom
(
H̃
)

required by Theorem 3.2 is not satisfied.

Acknowledgment

The authors have received support from the Finnish Graduate School on Engineering Me-
chanics, the Norwegian Research Council, and Aalto Starting Grant (grant no. 915587). The
authors wish to thank the anonymous referees for many valuable comments.

References

[1] A. Aalto, D. Aalto, J. Malinen and M. Vainio, Modal locking between vocal fold and vocal tract oscillations,
arXiv:1211.4788 (2012), submitted.

[2] A. Aalto and J. Malinen, Composition of passive boundary control systems. Math. Control Relat. Fields 3
(2013) 1–19.
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Appendix A. Sobolev spaces and Green’s identity

We prove a sufficiently general form of Green’s identity that holds in a tubular domain Ω
(that has a Lipschitz boundary) with minimal assumptions on any functions involved. We make
the following standing assumptions on Ω:

(i) Ω is a bounded Lipschitz domain so that Ω locally on one side of is boundary ∂Ω;
(ii) there is a finite number of smooth, open, connected, and disjoint (n − 1)-dimensional

surfaces Γj with the following property: the boundary ∂Ω is a union of all Γj’s and
parts of their common boundaries Γj ∩ Γk for j 6= k;

(iii) Hn−2(Γj∩Γk) <∞ for all j 6= k whereHm(M) is the m-dimensional Hausdorff measure
for 1 ≤ m ≤ n of M ⊂ Rn; and

(iv) for each j, there is a C∞ vector field νj defined in a neighbourhood of Ω such that νj(r)
is the exterior unit normal to Γj at r ∈ Γj.

That Γj ⊂ Rn is an open, bounded, and smooth (n− 1)-dimensional surface means plainly the

following: there is an open and bounded Γ̃j ⊂ Rn−1 and a C∞-diffeomorphism φj from Γ̃j onto

Γj. The pair (φj, Γ̃j) is a global coordinate representation of Γj.
The boundary conditions in Section 5 involve the Dirichlet conditions the end Γ(1) of the

tube, Neumann or Robin conditions on the wall Γ of the tube, and a Robin condition on the
end Γ(0). In other words, we must impose different types of boundary conditions on the same
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connected component of ∂Ω which is in contrast with the restrictive technical assumptions on
∂Ω in, e.g., [17, 29, 43]. Such assumptions must be avoided in the verification of, e.g., the
Green–Lagrange identity in Section 5 where we need a version of Green’s identity suitable for
wave propagation in a tubular domain with mixed boundary conditions. This is in Theorem
A.3 below. The key fact ensuring the validity of this identity is that the interfaces where we
switch between different boundary conditions are so small that Sobolev functions do not see
them. That this is the case is a consequence of the assumption (iii) above, and it is expressed
rigorously in the following auxiliary result.

Lemma A.1. Let Ω be a bounded domain with a Lipschitz boundary, and let E ⊂ Rn be a
compact set of zero capacity; i.e.,

C(E) := inf
u∈S(E)

∫
Rn

(
|u|2 + |∇u|2

)
dV = 0 (A.1)

where

S(E) := {u ∈ C∞(Rn) : 0 ≤ u ≤ 1 in Rn and u = 1 in N, where N is open and E ⊂ N}.

Then

(i) the set DE(Rn) is dense in H1(Rn) where

DE(Rn) := {u ∈ D(Rn) : u vanishes in an open neighbourhood of E}; and (A.2)

(ii) the set
DE(Ω) := {u

∣∣
Ω

: u ∈ DE(Rn)}
is dense in H1(Ω).

Proof. Claim (i): Let u ∈ H1(Rn) and ε > 0. Then by [12, Theorem 1.4.2.1] there is v ∈ D(Rn)
such that ‖u− v‖H1(Rn) < ε/2.

By the vanishing capacity assumption (A.1), there is a sequence {ϕj}j=1,2,... ⊂ C∞(Rn) such
that ϕj

∣∣
Nj

= 1 for some neighbourhoods Nj of E, and also

lim
j→∞

∫
Rn

(
|ϕj|2 + |∇ϕj|2

)
dV = 0. (A.3)

Defining vj(r) := v(r)(1 − ϕj(r)) we see that each of these functions satisfies vj ∈ DE(Rn). It
remains to prove that ‖vj − v‖H1(Rn) < ε/2 for all j large enough, since then

‖vj − u‖H1(Rn) ≤ ‖vj − v‖H1(Rn) + ‖u− v‖H1(Rn) < ε.

By possibly replacing {ϕj}j=1,2,... by its subsequence, we may assume that ϕj → 0 pointwise
almost everywhere; see [36, Theorem 3.12]. Because |vj(r)| ≤ |v(r)| for all r ∈ Rn and j =
1, 2, . . ., we have vj → v in L2(Rn) by the Lebesgue dominated convergence theorem. For the
gradients, we note that ∇(vj − v) = −ϕj∇v − v∇ϕj. Thus |∇(vj − v)| → 0 in L2(Rn), since
both ϕj and |∇ϕj| tend to zero in L2(Rn) by (A.3).
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Claim (ii): Let u ∈ H1(Ω) and take ε > 0. Since Ω has a Lipschitz boundary, there is an
extension operator T ∈ L(H1(Ω);H1(Rn)) such that (Tu)

∣∣
Ω

= u; see [12, Theorem 1.4.3.1].
By claim (i), there is a function v ∈ DE(Rn) such that

‖u− v
∣∣
Ω
‖H1(Ω) ≤ ‖Tu− v‖H1(Rn) < ε

which completes the proof. �

Let us review the Sobolev spaces and the boundary trace mappings on Ω and ∂Ω when the
standing assumptions (i) – (iv) above hold. The boundary Sobolev spaces Hs(∂Ω) and Hs(Γj)
for s ∈ [−1, 1] are defined as in [12, Definitions 1.2.1.1 and 1.3.3.2]. The zero extension Sobolev
spaces on Γj are defined by

H̃s(Γj) := {u ∈ Hs(Γj) : ũ ∈ Hs(∂Ω)}

for s ∈ (0, 1] where

ũ(r) :=

{
u(r) if r ∈ Γj
0 if r ∈ ∂Ω \ Γj.

(A.4)

We use the Hilbert space norms ‖u‖H̃s(Γj)
:= ‖ũ‖Hs(∂Ω). The space H̃s(Γj) is closed in this norm

since restriction to Γj from ∂Ω is a bounded operator from Hs(∂Ω) to Hs(Γj) for 0 ≤ s ≤ 1.
This boundedness follows trivially by restriction using the Gagliardo norm, see [12, Eq. (1,3,3,3)
on p. 20]. Then Hs(∂Ω) ⊂ L2(∂Ω) and H̃s(Γj) ⊂ Hs(Γj) ⊂ L2(Γj) with bounded inclusions.

The Dirichlet trace operator γ is first defined for functions f ∈ D(Ω) simply by restriction
γf := f

∣∣
∂Ω

. This operator has a unique extension to a bounded operator γ ∈ L(H1(Ω);H1/2(∂Ω));
see [12, Theorem 1.5.1.3] and Lemma A.1. All this holds for any Lipschitz domain Ω.

We define the Neumann trace operator separately on each surface Γj using the vector fields νj.

Such an operator γj
∂
∂νj

is first defined onD(Ω) (with values in L2(∂Ω)) by setting
(
γj

∂
∂νj
f
)

(r) :=

νj(r) ·∇f(r) for all r ∈ Γj; here γjf := f
∣∣
Γj

and ∂
∂νj

:= νj ·∇. It is easy to see that ∂f
∂νj
∈ H1(Ω)

and hence γj
∂
∂νj

has an extension to an operator in L(H2(Ω);H1/2(Γj)) by [12, Theorem 1.5.1.3].

We then define the full Neumann trace operator γ ∂
∂ν

on ∪jΓj by

γ
∂f

∂ν
(r) := γj

∂f

∂νj
(r) for all f ∈ H2(Ω) and (almost) all r ∈ Γj.

Note that the function γ ∂f
∂ν

is not defined at all on the exceptional set of capacity zero

E := ∪j 6=k(Γj ∩ Γk) (A.5)

of the non-smooth part of ∂Ω. That C(E) = 0 follows from the standing assumption (iii)
by [6, Theorem 3, p. 154].

We need to extend each γj
∂
∂νj

to the Hilbert space

E(∆;L2(Ω)) := {f ∈ H1(Ω) : ∆f ∈ L2(Ω)}
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that is equipped with the norm defined by ‖f‖2
E(∆;L2(Ω)) = ‖f‖2

H1(Ω) + ‖∆f‖2
L2(Ω).

Proposition A.2. Let the domain Ω ⊂ Rn satisfy the standing assumptions (i) – (iv).

(i) Then each Neumann trace operator γj
∂
∂νj

(originally defined on D(Ω)) has a unique

extension (also denoted by γj
∂
∂νj

) that is bounded from E(∆;L2(Ω)) into the dual space

of H̃1/2(Γj) with pivot space L2(Γj).
(ii) We have∫

Ω

(∆u) v dV +

∫
Ω

∇u · ∇v dV =
∑
j

〈
γj
∂u

∂ν
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

for all u ∈ E(∆;L2(Ω)) and v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for all j.

Proof. The classical Green’s identity for u ∈ D(Ω) and v ∈ DE(Ω) is∫
Ω

(∆u) v dV +

∫
Ω

∇u · ∇v dV =
∑
j

∫
Γj

γj
∂u

∂νj
γjv dA, (A.6)

where E is the exceptional set in (A.5). Indeed, since v vanishes near the interfaces Γj ∩Γk for
j 6= k, we may initially apply Green’s identity just like (A.6) but over a subdomain of Ω that
has been obtained from Ω by rounding slightly at all ∂Γj’s but preserving essentially all of ∂Ω.
Here the functions u and v and the rounded subdomain are all smooth, so the Green’s formula
we use here is the one familiar from vector calculus. Then we get (A.6) by rewriting the result
as integrals over the original Ω and the original boundary pieces Γj, noting that on additional
points the integrands vanish because v ∈ DE(Ω). Notice that all the functions appearing above
are smooth, so we can use Green’s formula

It follows from (A.6) that we have for u ∈ D(Ω) and v ∈ DE(Ω) the estimate∣∣∣∣∣∑
j

〈
γj
∂u

∂νj
, γjv

〉
L2(Γj)

∣∣∣∣∣ ≤ ‖u‖E(∆;L2(Ω)) · 4‖v‖H1(Ω). (A.7)

Because DE(Ω) is dense in H1(Ω) by Lemma A.1 and γ ∈ L(H1(Ω);H1/2(∂Ω)) by the trace
theorem [12, Theorem 1.5.1.3], we conclude that (A.7) holds for all u ∈ D(Ω) and v ∈ H1(Ω).

Fix now j and g ∈ H̃1/2(Γj), and define g̃ ∈ H1/2(∂Ω) by (A.4). Because the Dirichlet
trace γ : H1(Ω) → H1/2(∂Ω) is bounded and surjective, it has a continuous right inverse
P ∈ L(H1/2(∂Ω);H1(Ω)), see [12, Theorem 1.5.1.3]. Thus we have the estimate 4‖Pg‖H1(Ω) ≤
K‖g̃‖H1/2(∂Ω) = K‖g‖H̃1/2(Γj)

for all g ∈ H̃1/2(Γj).

It follows from all this and (A.7) that we have

|Φg(u)| ≤ K‖u‖E(∆;L2(Ω)) · ‖g‖H̃1/2(Γj)
(A.8)
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for all g ∈ H̃1/2(Γj) where Φg(u) :=
〈
γ ∂u
∂ν
, g̃
〉
L2(∂Ω)

=
〈
γj

∂u
∂νj
, g
〉
L2(Γj)

for u ∈ D(Ω). Since D(Ω)

is dense in E(∆;L2(Ω)) by [12, Lemma 1.5.3.9], we may extend Φg, g ∈ H̃1/2(Γj), by continuity
to a continuous linear functional on E(∆;L2(Ω)) satisfying estimate (A.8), too.

For each fixed u ∈ E(∆;L2(Ω)), the mapping g 7→ Φg(u) is a continuous linear functional

on H̃1/2(Γj) by (A.8). Hence, there is a representing vector – denoted by γj
∂u
∂νj

– in the dual

space [H̃1/2(Γj)]
d such that Φg(u) =

〈
γj

∂u
∂νj
, g
〉

[H̃1/2(Γj)]d,H̃1/2(Γj)
. This proves claim (i). Claim

(ii) follows by a density argument using claim (i) and (A.8). �

Theorem A.3 (Green’s identity). Let the domain Ω ⊂ Rn satisfy the standing assumptions (i)
– (iv) above. Assume that u ∈ H1(Ω) is such that ∆u ∈ L2(Ω) and satisfies γ ∂u

∂ν
∈ L2(∪kj=1Γj)

for some 1 ≤ k ≤ n. Then the Green’s identity∫
Ω

(∆u) v dV +

∫
Ω

∇u · ∇v dV =
k∑
j=1

∫
Γj

∂u

∂ν
v dA+

n∑
j=k+1

〈
γj
∂u

∂νj
, γjv

〉
[H̃1/2(Γj)]d,H̃1/2(Γj)

(A.9)

holds for functions v ∈ H1(Ω) such that γjv ∈ H̃1/2(Γj) for k + 1 ≤ j ≤ n.

For n = 2, this is a generalisation of [12, Theorem 1.5.3.11]. See also [12, discussion on p.
62] for domains with C1,1-boundaries. The assumption γ ∂u

∂ν
∈ L2(∪kj=1Γj) simply means that

γj
∂u
∂νj
∈ L2(Γj) for all j = 1, 2, . . . , k where γj

∂u
∂νj

is understood as an element of [H̃1/2(Γj)]
d

which includes L2(Γj); see Proposition A.2.

Proof. As explained above, we have γjv, γj
∂u
∂νj
∈ L2(Γj) for all j = 1, . . . , k. Then (A.9) follows

from claim (ii) of Proposition A.2 under the additional assumption that γjv ∈ H̃1/2(Γj) for all
j. The functions in DE(Ω) clearly satisfy this additional assumption, and they are dense in
H1(Ω). This proves the claim. �

An alternative to the above piecewise construction is to start with the global Neumann trace
γ ∂
∂ν
u defined for u ∈ E(∆;L2(Ω)) with values in H−1/2(∂Ω), see, e.g., [45, Theorem 13.7.6].

The global Neumann trace γ ∂
∂ν
u can be restricted to the spaces H̃1/2(Γj), and claim (ii) of

Proposition A.2 follows from a global Green’s identity in a general Lipschitz domain. However,
one still needs Lemma A.1 to prove Theorem A.3.

It remains to prove the Poincaré inequality that is used to show that the expression (5.7) is
a valid Hilbert space norm for the state space. Let Γj be one of the boundary components of
∂Ω as described above. By the standing assumptions (i) and (ii) given in the beginning of this
appendix, the set Γj has a finite, positive area Aj =

∫
Γj

dA. Thus, we can define the mean

value operator Mj : H1(Ω)→ C on Γj by

Mju =
1

Aj

∫
Γj

γju dA,
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It is clear that Mj is a bounded linear functional on H1(Ω), and we may regard it as an element
of L(H1(Ω)) safistying M2

j = Mj by considering Mju as a constant function on Ω.

Theorem A.4 (Poincaré inequality). Let the domain Ω ⊂ Rn satisfy the standing assumptions
(i) – (iv) above, and let Γj be one of the boundary components of ∂Ω. There is a constant
C <∞ such that

‖u−Mju‖L2(Ω) ≤ C‖∇u‖L2(Ω) (A.10)

for all u ∈ H1(Ω). Thus, we have ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) for u ∈ H1(Ω) ∩ ker (γj).

Proof. The argument is a standard argument by contradiction using the Rellich–Kondrachov
compactness theorem, see e.g. [6, Theorem 1, p. 144]). For a contradiction against (A.10),
assume that there exist functions uk ∈ H1(Ω) such that there is the strict inequality

‖uk −Mjuk‖L2(Ω) > k‖∇uk‖L2(Ω) for k = 1, 2, . . . .

None of the functions uk are constant functions since for such functions (A.10) holds for any
C ≥ 0. So, we can define the functions

vk :=
uk −Mjuk

‖uk −Mjuk‖L2(Ω)

satisfying for all k the normalisation ‖vk‖L2(Ω) = 1 and also Mjvk = 0 by using M2
j = Mj.

Since

‖∇vk‖2 =
‖∇uk‖2

L2(Ω)

‖uk −Mjuk‖2
L2(Ω)

<
1

k2

by the counter assumption, we get

‖vk‖2
H1(Ω) = ‖vk‖2

L2(Ω) + ‖∇vk‖2
L2(Ω) ≤ 1 +

1

k2
≤ 2.

Since the embedding H1(Ω) ⊂ L2(Ω) is compact (by the boundedness of Ω and the Rellich–
Kondrachov compactness theorem, see e.g. [6, Theorem 1, p. 144]), we have a function v such
that vk → v in L2(Ω) by possibly replacing {vk} by its subsequence. Moreover, ‖v‖L2(Ω) = 1
since ‖vk‖L2(Ω) = 1 for all k.

Since ‖∇vk‖L2(Ω) ≤ 1/k, we see that vk → v in H1(Ω) and hence∇v = 0. Thus v is a constant
function. Because Mjv = limk→∞Mjvk = 0, we conclude that v = 0 which contradicts the fact
that ‖v‖L2(Ω) = 1. This proves (A.10), and the Poincaré equality follows trivially from this. �


