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Abstract— We give sufficient and necessary conditions for a
boundary control system (in the sense of Salamon) to define
a Livšic – Brodskiı̆ operator node; i.e. a linear (scattering)
conservative system. This appears to be a special case of a more
general result involving time-flow invertible linear systems.
Finally, an example involving the wave equation is considered.

I. INTRODUCTION

In this paper, we give sufficient and necessary conditions
for the conservativity of linear boundary control systems.
Such systems are often described by differential equations
of the form ⎧⎪⎨

⎪⎩
ż(t) = Lz(t),
Gz(t) = u(t),
y(t) = Kz(t) for all t ≥ 0

(1)

where the operators comprising the boundary node Ξ =
(G, L, K) satisfy the additional conditions of Definition 1.

In this paper, the linear systems are described by system
nodes (or, more generally, operator nodes) S =

[
A&B
C&D

]
on the Hilbert spaces1 U , Y , X as defined in [12, Section
2]. Following e.g. [12, Proposition 2.5], assume that the
functions u(·) ∈ C2(R+; U), z(·) ∈ C1(R+; X), y(·) ∈
C(R+; Y ) satisfy the differential equation associated to S:{

ż(t) = A−1z(t) + Bu(t),

y(t) = C&D
[

z(t)
u(t)

]
for all t ≥ 0;

(2)

here A ∈ L(X1, X), A−1 ∈ L(X, X−1) and B ∈
L(U ; X−1) are the main operator, the Yoshida extended
main operator and the input operator of S, respectively, and
X−1 := dom (A∗)d. We shall show in Theorem 1 that any
internally well-posed boundary node Ξ can be translated to a
unique system node S satisfying the conditions of Definition
2, so that the differential equations (1) and (2) have the
same, unique solutions for same u(·) ∈ C2(R+; U) and
(compatible) initial values z(0) = z0.

What is a (scattering) conservative linear system, then?
We say that the system node S is energy preserving if for
any input u(·) ∈ C2(R+; U) and any (compatible) initial
state z(0) = z0, the unique solution of (2) satisfies the

1All Hilbert spaces in this paper are separable.

energy balance equation d
dt‖x(t)‖2

X = ‖u(t)‖2
U − ‖y(t)‖2

Y ,
see [12, Definition 3.1]. That S is (a) conservative (system)
means that both S and Sd are energy preserving, where
Sd denotes the dual system node of S as described in [12,
Proposition 2.3]. This notion of conservativity is the “right
one” because it connects directly to the classical Livšic –
Brodskiı̆ (operator) nodes. A rich theory exists for these
nodes (including a good selection of canonical realizations
and a state space isomorphism theorem), see [1], [4], [5],
[6], [12], [16], [17], [18], [19].

Unfortunately, this definition of conservativity refers di-
rectly to Sd, and it is less than obvious how to relate
Sd to the operators G, L, K appearing in (1) – the given
data of a typical boundary control problem. The purpose
of this paper is to solve these complications with the aid
of main Theorems 5 and 6. Such tools are required, when
applying conservativity-related operator theory techniques
(such as the one proposed in [7] for numerical input/output
approximation) to practical problems (such as the wave
equation in Ω ⊂ R

n, described in Section VI). The boundary
control related results of this paper can also be found in [11].

II. BOUNDARY NODES AND OPERATOR NODES

We develop the required background results for boundary
nodes, and show that they induce operator nodes (of bound-
ary control type). We then review the solvability of (1). Let
us start with two definitions.

Definition 1: Assume that U , X and Y are (separable)
Hilbert spaces. Assume that Z is a Hilbert space, such that
Z ⊂ X with a bounded and dense inclusion.

(i) Let L ∈ L(Z; X), G ∈ L(Z; U) and K ∈ L(Z; Y ) be
operators such that the following conditions hold for
some α ∈ C+:
(a) U = Ran G,
(b) Ker G is dense in X ,
(c) (α − L)Ker G = X , and
(d) Ker (α − L) ∩ Ker G = {0}.

Then the triple Ξ = (G, L, K) is called a boundary
node on spaces U , X , Z and Y . The space Z is the
solution space of Ξ.

(ii) If both Ξ = (G, L, K) and Ξ← := (K,−L,G) are
boundary nodes, then Ξ is called a doubly boundary
node.
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(iii) If L|Ker G generates a C0-semigroup, Ξ is then called
internally well-posed.

There are a number of essentially equivalent definitions
and names for boundary nodes. See e.g. [14], [15] that
unfortunately contain a mistake2. An earlier approach is [2].

Definition 2: Let S =
[

A&B
C&D

]
be an operator node on

spaces U , X and Y as in [12, Definition 2.2]. Then S is of
boundary control type (in the sense of Salamon), if ρ(A) ∩
C+ �= ∅, Ker B = {0} and BU ∩ X = {0}.
The spaces U , X , and Y are called input, state, and output
spaces of both Ξ and S, respectively. It is sometimes said
that B is strictly unbounded if BU ∩ X = {0}.

Any boundary node is canonically associated to an oper-
ator node of boundary control type.

Theorem 1: Let Ξ = (G, L, K) be a boundary node on
Hilbert spaces U , X and Y with the solution space Z. Define

X1 := Ker G and A := L|X1 : X1 → X,

X−1 := dom (A∗)d and A−1 : X → X−1 as usual,

BGz := Lz − A−1z for all z ∈ Z, and

V := {[ x
u ] ∈ [ Z

U ] : A−1x + Bu ∈ X} .

Then S =
[

A&B
C&D

]
is an operator node of boundary control

type (on spaces U , X , and Y ) with dom (S) = V , where
for all [ x

u ] ∈ V

A&B [ x
u ] := A−1x + Bu and C&D [ x

u ] := Kx. (3)

Also V = [ I
G ] Z and Z = X1+̇(α − A−1)−1BU hold for

any α ∈ ρ(A). Moreover, S is a system node if and only if
Ξ is internally well-posed.

Proof: See [10, Theorem 1, Proposition 3].
We proceed to solve the Cauchy problem for differential
equation (1) by using Theorem 1 and [12, Proposition 2.5].

Lemma 1: Assume that Ξ = (G, L, K) is an internally
well-posed boundary node on Hilbert spaces U , X , Z and
Y . Let u ∈ C2([0,∞); U) and z0 ∈ Z be such that the
compatibility condition Gz0 = u(0) is satisfied.

(i) Then equations (1) has a unique classical solution
z(·) ∈ C([0,∞); Z)∩C1([0,∞); X), such that z(0) =
z0 and y(·) ∈ C([0,∞); Y ).

(ii) The same functions u(·), z(·) and y(·) satisfy (2), too.
Proof: By S =

[
A&B
C&D

]
denote the system node that

is related to Ξ as in Theorem 1. Define the norm for V =
dom (S) by setting∥∥[ x

u ]
∥∥2

V
:= ‖x‖2

X + ‖u‖2
U + ‖A−1x + Bu‖2

X .

Since A is the generator of a C0-semigroup, it follows
from [12, Proposition 2.5] that there exists a unique z(·) ∈
C1([0,∞); X) ∩ C2([0,∞); X−1) such that (2) holds and[

z(·)
u(·)

]
∈ C([0,∞); V ). Since the inclusion V ⊂ [ Z

U ] is

bounded and V = [ I
G ] Z by [10, Proposition 3], it follows

that z(·) ∈ C([0,∞); Z) and u(t) = Gz(t) for all t ≥ 0.
Since L = A−1|Z + BG, (2) implies that for all t ≥ 0

ż(t) = A−1z(t) + Bu(t) = (A−1|Z + BG) z(t) = Lz(t).

2This rather small mistake was independently discovered (at least) by
G. Weiss and the author.

Since C&D and K are connected by (3), we conclude that
z(·) solves (1).
Lemma 1 gives a working interpretation to differential equa-
tion (1). Note that the trajectory z(·) is continuous in Z, but
the derivative ż(·) is computed (as a limit of a differential
quotient) in the weaker norm of X .

We remark that the converse of Theorem 1 holds, too.
Indeed, given an operator node S of boundary control type,
we can construct L, G, and K, so that Ξ = (G, L, K) is a
boundary node, see [10, Theorem 2]. Then the relation of Ξ
to S is the same as described in Theorem 1 above.

III. CONSERVATIVITY AND TIME-FLOW INVERSES

Let S =
[

A&B
C&D

]
be a conservative system with input

operator B and output operator C := C&D|X1. Such
systems satisfying the additional requirements

Ker B = {0}, Ker C∗ = {0}
are called tory systems3 in [12]. In some sense, tory systems
have no “redundant” or “wasted” subspaces in U and Y , so
that all the information is circulated through the state space.
Such systems have been characterized in [12, Theorem 4.4]
by using as few assumptions as possible. Any conservative
system can be represented as a “cartesian product” of a
tory system and an isometric isomorphism from Ker B onto
Ran C⊥, see [12, Theorem 4.5]. The purpose of this section
is to give yet another characterisation – Theorem 2 – for tory
systems. The proofs for Theorems 5 and 6 depend on this
theorem.

For some system nodes S =
[

A&B
C&D

]
, equations (2) can

be solved backwards in time, if the input and output are
interchanged, too. For bounded B, C, D, and D−1, the
inverse dynamics can be obtained easily:{

ż(t) =
(−A + BD−1C

)
−1

z(t) − BD−1y(t),

u(t) = −D−1Cz(t) + D−1y(t).

The general case is unfortunately more technical:
Definition 3: Let S =

[
A&B
C&D

]
be an operator node on

spaces U , X and Y with dom (S) = V . We say that S is
time-flow invertible, if there exists an operator node S← =[

[A&B]←

[C&D]←

]
on spaces Y , X and U , with dom (S←) = V ←

and the main operator A← such that

(i) both ρ(A) ∩ C+ �= ∅ and ρ(A←) ∩ C+ �= ∅,

(ii)

[
1 0
C&D

]
: V → V ← is a bounded bijection, and

(iii) we have on all of V ←

S← =
[−A−1 −B

0 I

] [
1 0
C&D

]−1

. (4)

When these conditions hold for S and S←, we say that S←

is the time-flow inverse of S.
Time-flow invertibility has been treated in depth in [18], [20].
We point out that (S←)← = S whenever S is time-flow
invertible. Time-flow invertibility and conservativity of S go

3Such operator nodes are also known as Julia colligations.
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hand in hand as the following two propositions will remind
us. (Recall that Sd stands for the dual operator node of S.)

Proposition 1: Let S be a system node. Then S is conser-
vative if and only if it is time-flow invertible and Sd = S←.

Proposition 2: An energy preserving system node S is
conservative if and only if it is time-flow invertible.
For proofs of these propositions, see either [10, Propositions
5 and 6], or [18, Lemma 11.2.4], [20, Theorem 7.2].

Proposition 3: Assume S =
[

A&B
C&D

]
is a time-flow invert-

ible system node. Let A← : X←
1 → X be the main operator

and C← the output operator of the time-flow inverse S←.
Assume that the dual cross-term equation holds

C&D

[
I

B∗

]
= 0 on Xd

1 , (5)

and A∗ = A← (with equal domains). Then

A−1 + A∗ + BB∗ = 0 on Xd
1

and C← = B∗ on Xd
1 .

Proof: Because A∗ = A←, we have X←
1 = Xd

1 . Hence
[ x
0 ] ∈ V ← for all x ∈ Xd

1 . Because [ 1 0
C&D ] : V → V ← is

a bounded bijection (see Definition 3), there exists for any
x ∈ Xd

1 a unique vector [ x1
u1 ] ∈ V such that[

x
0

]
=

[
I 0
C&D

] [
x1

u1

]
.

By using the assumed dual cross-term equation (5), we see
that in fact x1 = x and u1 = B∗x. Hence, for any x ∈ Xd

1[
A←x
C←x

]
= S←

[
x
0

]
=

[−A−1 −B
0 I

] [
1 0
C&D

]−1 [
x
0

]

=
[−A−1 −B

0 I

] [
x

B∗x

]
=

[−A−1x − BB∗x
B∗x

]
.

But A←x = A∗x by assumption, and the claim follows.
We shall next characterize tory systems using the time-flow
inverse S← instead of the dual system Sd, as is usual. The
proof of the following theorem is based on Proposition 3,
[12, Proposition 2.4 and Theorem 4.4].

Theorem 2: Assume that S =
[

A&B
C&D

]
is a time-flow

invertible operator node. By A← denote the main operator
of the time-flow inverse S←. Then S is tory if and only if

(i) Ker B = {0},
(ii) A + A∗

−1 = −C∗C on X1,

(iii) C&D

[
I

B∗

]
= 0 on Xd

1 , and

(iv) we have A← = A∗ (with equal domains).
Proof: Conditions (i) – (iii) are necessary for toryness

by [12, Theorem 4.4]. By Proposition 1, tory systems satisfy
Sd = S←, and (iv) follows, too.

Assume that conditions (i) – (iv) hold. Then the dual
Liapunov equation is given by Proposition 3, and S is tory by
[12, Theorem 4.4] provided we can show that Ker C∗ = {0}.
Following [12, Proposition 2.4], decompose the space Y
orthogonally Y =

[
Y1
Y0

]
where Y1 = Ran C and Y0 = Y ⊥

1 .
The induced decomposition of S is then given by

S =
[

[A&B]r
[C&D]r
0 D01

]
: V →

[
X
Y1
Y0

]
with Sr :=

[
[A&B]r
[C&D]r

]
;

here Sr is the reduced operator node with output space Y1,
the domains satisfy V = dom (S) = dom (Sr), and D01 ∈
L(U ; Y0) is nonzero if and only if Y0 is nontrivial. Since B =
Br, C =

[
Cr
0

]
, and C∗ =

[
C∗

r 0
]
, we conclude (using

Proposition 3) that A + A∗
−1 = −C∗

r Cr on X1, together

with A−1 + A∗ = −BrB
∗
r and [C&D]r

[
I

B∗
r

]
= 0 on Xd

1 .
It follows from [12, Theorem 4.4] that Sr is a tory

node, and it is thus time-flow invertible with S←
r = Sd

r =[
[A&B]dr
[C&D]dr

]
; see Proposition 1. In particular,

[
I 0

[C&D]r

]
: V →

V d
r = dom

(
Sd

r

)
is a bijection with the inverse

[
I 0

[C&D]dr

]
,

and
[

I 0
C&D

]
=

[
I 0

[C&D]r
0 D01

]
. Because also S is time-flow

invertible, we get

V ← =
[

I 0
[C&D]r
0 D01

]
V =

[
[ I 0
0 I ]

[ 0 D01 ]
[

I 0
[C&D]r

]−1

]
V d

r (6)

=
[

[ I 0
0 I ]

D01 [C&D]dr

]
V d

r

and [
I 0
C&D

]−1

=
[

I 0 0
[C&D]dr 0

] ∣∣∣∣
V ←

.

But now we obtain S← =
[

[A&B]dr 0

[C&D]dr 0

]
on all of V ← by (4).

Because both Sd and S← are operator nodes, it follows that
V ← =

[
V d

r

Y0

]
which contradicts (6) unless D01 = 0. This

completes the proof.

IV. CONSTRUCTION OF THE TIME-FLOW INVERSE

We show next that the time-flow invertibility of an operator
node S =

[
A&B
C&D

]
(in the sense of Definition 3) almost

follows if it is known that S is of boundary control type
in the sense of Definition 2.

In this section, we assume that Ξ = (G, L, K) is a
boundary node, and S is an operator node associated to Ξ
as in Theorem 1. We further write

V :=
[
I
G

]
Z and V ← :=

[
I
K

]
Z. (7)

Note that V = dom (S) by [10, Proposition 3]. Assuming
that Ran K = Y and Ker K ⊂ X is dense, [10, Proposition
10] shows that the linear mapping

S← :=
[−A−1 −B

0 I

] [
1 0
C&D

]−1

:
[
X
Y

]
→

[
X
U

]
(8)

is densely defined with dom (S←) = V ←. To show the time-
flow invertibility of S, it remains to prove that S← is an
operator node, see Definition 3.

Definition 4: Assume that Ξ = (G, L, K) is a boundary
node, and let S =

[
A&B
C&D

]
be the operator node associated

to Ξ by Theorem 1. Assume that Ran K = Y , Ker K is
dense in X , and ρ(−L|Ker K) ∩ C+ �= ∅.

(i) The mapping A← : Ker K → X is defined by A← :=
−L|Ker K.

(ii) Denote by X←
−1 the completion of X in norm

‖x‖Xd
−1

:= ‖(α − A←)−1x‖ for α ∈ ρ(A←) ∩ C+.
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(iii) Define B← : Y → X←
−1 by setting for all x ∈ Z

B←Kx := −Lx − A←
−1x,

where A←
−1 ∈ L(X; X←

−1) is the Yoshida extension of
A←.

(iv) The mapping C← : Ker K → Y is defined by C← :=
G|Ker K.

Theorem 3: Assume that Ξ = (G, L, K) is a boundary
node, and let S =

[
A&B
C&D

]
be the operator node associated

to Ξ by Theorem 1. Assume that Ran K = Y , Ker K is
dense in X , and ρ(−L|Ker K) ∩ C+ �= ∅. Define V ← and
S← by (7) and (8). Define the operators A←, B←, and C←

by Definition 4. Then the following holds:

(i) S← : dom (S←) ⊂ [ X
Y ] → [ X

U ] is an operator node
with dom (S←) = V ←.
The main operator of S← is A← with domain
dom (A←) = Ker K. The operator B← is the input
operator of S←, and the combined feedthrough/output
operator [C&D]← of S← satisfies

[C&D]←
[
x
y

]
= Gx for all

[
x
y

]
∈ V ←.

(ii) The operator node S is time-flow invertible, and its
time-flow inverse equals S←.

Proof: All this follows from a chain of technical
propositions, see [10, Propositions 8, 9, 10 and 11].
We remark that under the assumptions of the previous
theorem, also S← itself is of boundary control type, see [10,
Corollary 1]. The following reformulation of the previous
theorem is given in [10, Theorem 6]:

Theorem 4: Let Ξ = (G, L, K) be a doubly boundary
node, and assume that S =

[
A&B
C&D

]
is the associated operator

node given by Theorem 1. Then

(i) S is time-flow invertible, and the time-flow inverse S←

is of boundary control type, and
(ii) the time-flow inverse S← is associated to the boundary

node Ξ← := (K,−L,G) in the sense of Theorem 1.
By Theorem 4, it is reasonable to call any doubly boundary
node Ξ = (G, L, K) time-flow invertible. Then the time-
flow inverse of Ξ would be Ξ← = (K,−L, G), as is to be
expected from equations (1).

V. TIME-FLOW INVERTIBILITY AND CONSERVATIVITY

OF BOUNDARY NODES

We are now ready to apply all the previous results to
conservative boundary control systems. First comes an adap-
tation of Theorem 2 to the boundary control context.

Lemma 2: Let Ξ = (G, L, K) be a boundary node with
Ran K = Y , and assume S =

[
A&B
C&D

]
is an operator node

of boundary control type, as given by Theorem 1. Then S is
tory if and only if

(i) the primal Liapunov equation A+A∗
−1 = −C∗C holds

on X1,
(ii) we have Gx = B∗x for all x ∈ Xd

1 := dom (A∗), and
(iii) the identity −L|Ker K = A∗ holds (with equal

domains).

Proof: We start from the more interesting “sufficiency”
part. It is clear that condition (i) of Theorem 2 always holds
for boundary control systems. Conditions (ii) and (iv) of
Theorem 2 are same as condition (i) and (iii) of this lemma.
By condition (iii), we have Xd

1 = Ker K ⊂ Z. By condition
(ii) we have

[
I

B∗
]
x = [ I

G ] x ⊂ [ I
G ] Z = V = dom (S) for

all x ∈ Xd
1 , and hence C&D

[
I

B∗
]
x ∈ Y is well defined.

Since K and C&D are connected by equation (3), we obtain
C&D

[
I

B∗
]
x = Kx = 0 for all x ∈ Xd

1 . Thus condition (iii)
of Theorem 2 holds. Time-flow invertibility of S follows
from condition (iii) and Theorem 3 since −L|Ker K = A∗

and ρ(A) ∩ C+ �= ∅.
To prove the “necessity” part, assume that S is tory. Such

S is time-flow invertible and S← = Sd by Proposition
1. Thus all the conditions of Theorem 2 hold; hence also
conditions (i) and (iii) of this lemma hold, too.

By [12, Theorem 4.4], the dual Liapunov equation

[
A−1 B

] [
I

B∗

]
x = −A∗x ∈ X

holds for all x ∈ Xd
1 = Ker K, and hence

[
I

B∗
]
Ker K ⊂

V . Since V = [ I
G ] Z, the inclusion

[
I

B∗
]
Ker K ⊂ [ I

G ] Z
implies condition (ii) of this lemma.
We have actually proved above that condition (ii) of Lemma
2 can be replaced by the inclusion

[
I

B∗
]
Ker K ⊂ V .

The main result of this paper is the following:
Theorem 5: Let Ξ = (G, L, K) be a doubly boundary

node, and assume that S =
[

A&B
C&D

]
is the associated operator

node given in Theorem 1. Then S is conservative (hence,
tory) if and only if

(i) 2
 〈x, Lx〉X = −‖Kx‖2
Y for all x ∈ Ker G,

(ii) 〈z, Lx〉X + 〈Lz, x〉X = 〈Gz, Gx〉U for all z ∈ Z and
x ∈ Ker K.

Proof: Since Ξ is is a doubly boundary node, the
time-flow inverse S← exists by Theorem 4, and it is of
boundary control type. For the usual spaces and operators
involving S and S←, we have the identities X1 = Ker G,
A = L|Ker G, C = K|Ker G, X←

1 = Ker K, A← =
−L|Ker K, and C← = G|Ker K. Then (i) is same
as 2
 〈x, Ax〉X = −‖Cx‖2

Y for all x ∈ X1, which is
(by polarisation) equivalent to condition (i) of Lemma 2.
Condition (ii) of Lemma 2 holds if and only if

−〈z,A∗x〉X + 〈Lz, x〉X = 〈Gz, Gx〉U (9)

for all z ∈ Z and x ∈ dom (A∗) ,

since Ran G = U and BGz = −A−1z + Lz. This together
with condition (iii) of Lemma 2 imply condition (ii).

Because X1 is dense in X , condition (iii) of Lemma 2
holds if and only if X←

1 = dom (A∗) and 〈z,A←x〉X =
〈z,A∗x〉X for all z ∈ X1, x ∈ dom (A∗) if and only if

〈z, Lx〉X + 〈Lz, x〉X = 0 (10)

for all z ∈ Ker G and x ∈ Ker K. Clearly (ii) implies (10),
and hence it implies condition (iii) of Lemma 2, too. Finally
note that (ii) together with condition (iii) of Lemma 2 imply
(9) and thus condition (ii) of Lemma 2.
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There is another, slightly weaker variant of Theorem 5
whose formulation is more symmetric.

Theorem 6: Let Ξ = (G, L, K) be a doubly boundary
node, and assume that S =

[
A&B
C&D

]
is the associated operator

node given in Theorem 1. Then S is conservative (hence,
tory) if and only if the Green–Lagrange identity

2
 〈z0, Lz0〉X = ‖Gz0‖2
U − ‖Kz0‖2

Y (11)

holds for all z0 ∈ Z.
Proof: By the polarisation identity, (11) implies for

all z1, z2 ∈ Z the identity 〈z1, Lz2〉X + 〈Lz1, z2〉X =
〈Gz1, Gz2〉U − 〈Kz1,Kz2〉U . It is trivial that both the
conditions (i) and (ii) of Theorem 5 follow from this.

Conversely, assume that S is conservative. Let z0 ∈ Z
be arbitrary and u ∈ C2([0,∞); U) such that Gz0 =
u(0). By Lemma 1, there exists a solution z(·) ∈
C([0,∞); Z)∩C1([0,∞); X) of (1) that satisfies z(0) = z0

and d
dt‖z(t)‖2

X = ‖u(t)‖2
U − ‖y(t)‖2

Y . Differentiating and
using (1) gives

〈z(t), Lz(t)〉X + 〈Lz(t), z(t)〉X
= 〈Gz(t), Gz(t)〉U − 〈Kz(t),Kz(t)〉Y

for all t > 0. Since all the operators L, G and K are bounded
from space Z and z(·) ∈ C([0,∞); Z), we may take the limit
as t → 0+. Now (11) follows since z0 ∈ Z was arbitrary.

VI. REFLECTING MIRROR

This example is classical, and a more general version has
been treated in terms of “thin air” systems in [23, Section
7]; a construction that bears some resemblance to feedback
techniques appearing in [22]. Our approach resembles the
techniques of [8].

Suppose Ω ⊂ R
n, n ≥ 2, is an open bounded set with

C2-boundary ∂Ω. We assume that ∂Ω is the union of two
sets Γ0 and Γ1 with Γ0 ∩ Γ1 = ∅ 4. System S is described
by the exterior problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ztt(t, ξ) = ∆z(t, ξ) for ξ ∈ Ω and t ≥ 0,

−zt(t, ξ) − ∂z
∂ν (t, ξ) =

√
2 u(t, ξ) for ξ ∈ Γ1 and t ≥ 0,√

2 y(t, ξ) = −zt(t, ξ) + ∂z
∂ν (t, ξ) for ξ ∈ Γ1 and t ≥ 0,

z(t, ξ) = 0 for ξ ∈ Γ0 and t ≥ 0, and

z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ Ω.
(12)

We obtain equations of the form (1) by using the rule

ztt = ∆z =̂
d

dt

[
z
w

]
=

[
0 −1

−∆ 0

] [
z
w

]
.

The spaces Z, X and and operator L are defined by

L :=
[

0 −1
−∆ 0

]
: Z → X with

Z := Z0 × H1
Γ0

(Ω) and X := H1
Γ0

(Ω) × L2(Ω)

where Z0 :=
{
z ∈ H1

Γ0
(Ω) ∩ H3/2(Ω) : ∆z ∈ L2(Ω)

}
. The

norm of Z0 is given by

‖z0‖2
Z0

:= ‖z0‖2
H1(Ω) + ‖z0‖2

H3/2(Ω) + ‖∆z0‖2
L2(Ω).

4The sets Γ1 and Γ0 are allowed to have zero distance in [23]. This is
possible because stronger “background results” from [13] are used there.

For space X , we use the energy norm

‖ [ z0
w0 ] ‖2

X := ‖|∇z0|‖2
L2(Ω) + ‖w0‖2

L2(Ω). (13)

As is well known, it follows from Poincaré inequality
‖z0‖L2(Ω) ≤ K‖|∇z0|‖L2(Ω) for z0 ∈ H1

Γ0
(Ω) that this

norm is equivalent to the direct sum norm of X , see e.g.
[8, p. 168]. Thus Z ⊂ X with a bounded inclusion and
L ∈ L(Z; X).

Define the input and output spaces by U = Y := L2(Γ1),
together with

G [ z0
w0 ] :=

1√
2

(
−∂z0

∂ν
|Γ1 + w0|Γ1

)
and

K [ z0
w0 ] :=

1√
2

(
∂z0

∂ν
|Γ1 + w0|Γ1

)
.

It follows from the basic theory of boundary traces for
Sobolev spaces (see e.g. [3]) that G ∈ L(Z; U) and
K ∈ L(Z; Y ). For details, see the discussion in [10, page
29]. Clearly, the wave equation (12) is translated (at least
formally) to the form of (1), by using L, G and K.

Proposition 4: Let the operators L, G, K and spaces Z, X
be defined as above. Then Ξ = (G, L, K) is doubly boundary
node.

Proof: This is [10, Proposition 18], and its proof
requires several (but well-known) facts from the elliptic
regularity theory.
It is now almost trivial to check (using Theorem 5) that Ξ =
(G, L, K) defines a conservative linear system S. Indeed, for
an arbitrary [ z0

w0 ] ∈ Ker G, the Green’s formula [3, Lemma
1.5.3.8] implies

− 2
 〈[ z0
w0 ] , L [ z0

w0 ]〉X = 2
 〈
[ z0
w0 ] ,

[ w0
∆z0

]〉
X

= 2

(
〈∆z0, w0〉L2(Ω) +

∫
Ω

∇z0 · ∇w0 dΩ
)

= 2

(∫

Γ0∪Γ1

∂z0

∂ν
w0 dω

)
= 2‖w0|Γ1‖2

L2(Γ1)

because ∂z0
∂ν |Γ1 = w0|Γ1. Clearly K [ z0

w0 ] =
√

2w0|Γ1 for
all [ z0

w0 ] ∈ Ker G, and condition (i) of Theorem 5 holds.
Similarly,

〈[ z0
w0 ] , L [ x0

y0 ]〉X + 〈L [ z0
w0 ] , [ x0

y0 ]〉X (14)

= −
∫

Γ1

∂z0

∂ν
y0 dω −

∫
Γ1

w0
∂x0

∂ν
dω

for any [ z0
w0 ] ∈ Z and [ x0

y0 ] ∈ Ker K. On the other hand,

〈G [ z0
w0 ] , G [ x0

y0 ]〉L2(Γ1)
= − 1√

2

〈
∂z0

∂ν
|Γ1, G [ x0

y0 ]
〉

L2(Γ1)

+
1√
2
〈w0|Γ1, G [ x0

y0 ]〉L2(Γ1)
. (15)

Since G [ x0
y0 ] =

√
2y0|Γ1 = −√

2∂x0
∂ν |Γ1 for any [ x0

y0 ] ∈
Ker K, condition (ii) of Theorem 5 follows from (14) and
(15).5 We have obtained [10, claim (i) of Lemma 3], namely:

5We leave it to the reader to carry out the similar computation leading
to the Green – Lagrange identity (11).
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Lemma 3: Let the operators L, G, K and spaces Z, X be
defined as above. Use the energy norm (13) for X . Then the
boundary node Ξ = (G, L, K) associated to wave equation
(12) describes a (tory) conservative system S =

[
A&B
C&D

]
through Theorem 1 and Lemma 1.
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