
ON THE DEFINITION OF THE CONE SPECTRAL
RADIUS

GUSTAF GRIPENBERG

Abstract. For functions homogeneous of degree 1 and mapping
a cone into itself two reasonable definitions of the cone spectral
radius have been given. Although they have been shown to be equal
in many cases, this note gives an example showing that the two
definitions may differ for continuous, homogeneous of degree one
functions which are also order-preserving in the partial ordering
induced by the cone.

1. Introduction

The purpose of this note is to study under what assumptions two
different definitions of the cone spectral radius of a function which is
homogeneous of degree 1 and maps a cone C in a normed linear space
X into itself can give different results. Our results in Section 3 below
answer a question which was raised in a remark on page 527 of [4].

The Bonsall cone spectral radius of f (introduced under a different
name in [2]) is defined by

r̃C(f) = lim
k→∞
‖fk‖1/kC ,

where fk = f ◦ . . . ◦ f︸ ︷︷ ︸
k

and

‖fk‖C = sup{ ‖fk(x)‖X : x ∈ C and ‖x‖X ≤ 1 }.
(It follows from the subadditivity of log(‖fk‖C) that the limit exists.)

In [4] the following definition is introduced as well:

rC(f) = sup
{

lim sup
k→∞

‖fk(x)‖1/kX : x ∈ C
}
.

Clearly, one always has rC(f) ≤ r̃C(f). In [4, Theorems 2.2 and 2.3]
and [5, Theorem 3.4] conditions are given under which rC(f) = r̃C(f).
See also [1] where a formula characterizing the growth rate of orbits
is given and [3] where the continuity of the mapping f 7→ rC(f) is
studied.
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The main purpose of this note is to give examples in which rC(f) <
r̃C(f) and in order to make it easier to see how these examples are re-
lated to some of the cases where one has equality we state [4, Theorems
2.2 and 2.3] below (and give a short proof of the former result).

A cone C in a real vector space X is here (following Wikipedia at
the moment of writing but noting that often additional properties are
required of a cone) defined to be a subset of X such that λx ∈ C
provided x ∈ C and λ > 0. A convex cone is a cone C in X such that
C is a convex subset of X and this is the case if and only if x+ y ∈ C
for all x and y ∈ C. If X is e.g. a normed linear space then a cone C
in X is said to be complete (a complete cone) if it is a complete metric
space in the topology induced by X. In the case where X is a Banach
space this is equivalent to C being closed in X.

With the aid of a cone C ⊂ X one can define relations ≤C and ≥C
on X so that x ≤C y or equivalently y ≥C x if and only if y − x ∈ C.
These relations are reflexive if 0 ∈ C, transitive if C is convex, and
anti-symmetric if C ∩ (−C) ⊂ {0} (where −C = {−x : x ∈ C }) and
if all these conditions hold we have a partial order.

A function f : C → C is said to be order-preserving if f(x) ≤C f(y)
(f(x) ≥C f(y)) whenever x, y ∈ C and x ≤C y (x ≥C y). Furthermore,
it is said to be homogeneous of degree 1 if f(λx) = λf(x) for all λ > 0
and x ∈ C.

2. Two cases where rC(f) = r̃C(f)

The following theorem is essentially [4, Theorem 2.2].

Theorem 2.1. Assume that

(i) X is a real normed linear space.
(ii) C is a convex and complete cone in X such that C∩(−C) = {0}.
(iii) f : C → C is order-preserving and homogeneous of degree 1.
(iv) There is an integer m ≥ 1 and a number M < ∞ such that if

x, y ∈ fm(C) and x ≤C y then ‖x‖X ≤M‖y‖X .
Then rC(f) = r̃C(f).

When f maps C into C it is clear that if ‖x‖X ≤M‖y‖X whenever
x ≤C y and x, y ∈ C (i.e., if the cone is normal), then hypothesis (iv)
holds.

Proof of Theorem 2.1. Clearly we may assume that C 6= {0}. Then
for each k ≥ 1 there is a vector xk ∈ C with ‖xk‖X = 1 such that
‖fk(xk)‖ ≥ k

k+1
‖fk‖C (or ‖fk(xk)‖ ≥ kk if ‖fk‖C = ∞). Since C is a
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convex and complete cone we can construct a vector x ∈ C by

x =
∞∑
j=1

j−2xj.

We have k−2xk ≤C x for each k ≥ 1 and since f , and hence fk, is
order-preserving and homogeneous of degree 1 we have

k−2fk(xk) ≤C fk(x), k ≥ 1.

Now it follows from assumption (iv) that

‖fk(xk)‖1/kX ≤ (k2M)1/k‖fk(x)‖1/kX , k ≥ m.

This inequality together with our choice of xk and the definitions of
r̃c(f) and rC(f) imply that

r̃C(f) ≤ lim sup
k→∞

‖fk(xk)‖1/kX ≤ lim sup
k→∞

(k2M)1/k‖fk(x)‖1/kX ≤ rC(f),

which gives the claim as one always has rC(f) ≤ r̃C(f). �

For completeness we include (a slight reformulation) of [4, Theorem
2.3] where the main assumption is that fm is compact. For the proof,
see [4].

Theorem 2.2. Assume that

(i) X is a real normed linear space.
(ii) C is a nonempty cone in X.

(iii) f : C → C is continuous and homogeneous of degree 1.
(iv) There is an integer m ≥ 1 such that the closure of fm(B) is a

compact subset of C (in the topology induced by X) for every
bounded subset B of C.

Then rC(f) = r̃C(f).

3. Examples where rC(f) < r̃C(f)

The main example involves the case where hypothesis (iv) in Theo-
rem 2.1 (and in Theorem 2.2) does not hold.

Example 3.1. Here we give an example of a Banach space X, a closed
and convex cone C ⊂ X such that C ∩ (−C) = {0}, and a function
f : C → C which is continuous, order-preserving, and homogeneous of
degree 1 such that rC(f) < r̃C(f).

Write points V ∈ R2 as (x(V ), y(V )) and let X = {U : Z+ → R2 :
‖U‖X <∞} where

‖U‖X =
∞∑
n=1

(
2n|x(U(n))|+

∣∣x(U(n)) + y(U(n))
∣∣).
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For every α > 0 we define a closed and convex cone Cα in R2 by

Cα =
{
V ∈ R2 : x(V ) + y(V ) ≥ αmax{0, x(V )}

}
,

and then we can define a closed and convex cone C in X by

C = {U ∈ X : U(n) ∈ C2−n , n ≥ 1 }.
Note also that with this definition we have C ∩ −C = {0} because
Cα ∩ (−Cα) = {0} for all α > 0.

Let h : [0,∞)× R2 → R2 be the continuous function

h
(
q, V

)
=
(
qx(V ), y(V ) + (1− q)x(V )

)
,

and let g : [0,∞)× R2 → R2 be the continuous function

g
(
q, V

)
=
(

min
{
x(h(q, V )), x(V ) + y(V )

}
,max

{
y(h(q, V )), 0

})
.

Note that both of these functions leave the sum of the coordinates of
the point V unchanged and that when V = U(n) with U ∈ C this sum
is non-negative.

We define the function q on C as follows: If U ∈ C and
∑∞

k=1(x(U(k))+
y(U(k))) = 0 then q(U)(n) = 0 for all n ≥ 1 and otherwise

q(U)(n) =
max{0, x(U(n))}∑∞

j=1(x(U(j)) + y(U(j)))
, n ≥ 1.

Now we can define the function f on C as follows:

f(U)(n+ 1) =

{
(0, 0), if n = 2p − 1, p ≥ 0,
1
2
g
(
q(U)(n), U(n)

)
, for all other n ≥ 1.

We formulate the claims that this is an example with the desired
properties in a series of lemmas. The proof of the first lemma is left to
the reader.

Lemma 3.2. Let X, C, and f be as in Example 3.1 above. Then X is
a Banach space, C is a closed, convex cone such that C ∩ (−C) = {0}
and f : C → X is homogeneous of degree 1.

The next lemma is the crucial part of verification of the example.

Lemma 3.3. Let X, C, and f be as in Example 3.1 above. Then f is
order-preserving and f(C) ⊂ C.

Proof. Suppose U1, U2 ∈ C with U1 ≥C U2. Let n ≥ 1, write qj =
q(Uj), Uj(n) = (xj, yj) and g(qj, Uj(n)) = (x̂j, ŷj) for j = 1, 2. If we
can prove that (x̂1, ŷ1) ≥C2−n−1 (x̂2, ŷ2) then we get the claim that f is
order-preserving.
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Note that it follows from the assumption (x1, y1) ≥C2−n (x2, y2) and
the definitions of h and g that

(3.1) x̂1 + ŷ1 = x(h(q1, U1(n))) + y(h(q1, U1(n))) = x1 + y1

≥ x2 + y2 = x(h(q2, U2(n))) + y(h(q2, U2(n))) = x̂2 + ŷ2.

First we suppose that min{x1, x2} ≤ 0. If x1 ≤ 0, then we have
0 = x̂1 ≤ x̂2, that is, max{0, x̂1 − x̂2} = 0 which by (3) implies that
(x̂1, ŷ1) ≥C2−n−1 (x̂2, ŷ2). If on the other hand x1 > 0, which implies
that x2 ≤ 0, then x̂1 ≤ x1 since the only case where q1 > 1 is where
y1 < 0 and then x̂1 = x1 + y1 < x1. Thus we have x̂1 − x̂2 ≤ x1 − x2
and since by assumption x1 − x2 + y1 − y2 ≥ 2−n max{0, x1 − x2} we
get by (3) that x̂1 − x̂2 + ŷ1 − ŷ2 ≥ 2−n−1 max{0, x̂1 − x̂2}, that is
(x̂1, ŷ1) ≥C2−n−1 (x̂2, ŷ2).

Suppose next that xj > 0 for j = 1, 2. It follows that q1 and q2 are
positive as well. First we show that that

(3.2) h
(
q1, (x1, y1)

)
≥C2−n−1 h

(
q2, (x2, y2)

)
.

If q1x1−q2x2 ≤ 0, then we recall that by (3) we have x1+y1 ≥ x2+y2
and hence we get

q1x1−q2x2+y1+(1−q1)x1−
(
y2+(1−q2)x2

)
= x1+y1−(x2+y2) ≥ 0

= 2−n−1 max{0, q1x1 − q2x2},

which is the claim (1).
Suppose next that q1x1 − q2x2 > 0. Since U1 ≥C U2 implies that∑∞
j=1(x(U1(j)) + y(U1(j))) ≥

∑∞
j=1(x(U2(j)) + y(U2(j))) we have

(3.3)
q1
x1
≤ q2
x2
.

This inequality combined with q1x1 − q2x2 > 0 implies, since x1 and
q1 > 0, that

x1 >
q2x2
q1
≥ x22
x1
.

Thus x21 > x22 which implies that

(3.4) x1 > x2 > 0,

since both numbers are assumed to be positive. Using inequality (2)
and the positivity of x2 once more we obtain(

q1x1 − q2x2
)
≤ q1

(
x1 −

x22
x1

)
= q1

x1 + x2
x1

(x1 − x2).
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Provided we assume for the moment that

(3.5) q1
x1 + x2
x1

≤ 2,

we can therefore conclude that

(3.6) 2−n(x1 − x2) ≥ 2−n−1
(
q1x1 − q2x2

)
.

The inequalities (x1, y1) ≥C2−n (x2, y2) and (3) imply that

(3.7) x1 − x2 + y1 − y2 ≥ 2−n(x1 − x2),
and when this inequality is combined with (5) and the assumption
q1x1 − q2x2 > 0 we get

q1x1 − q2x2 + y1 + (1− q1)x1 − (y2 + (1− q2)x2) = x1 − x2 + y1 − y2
≥ 2−n(x1 − x2) ≥ 2−n−1(q1x1 − q2x2) = 2−n−1 max{0, q1x1 − q2x2}.

This is the claim (1).
If (1) holds (recall that we needed assumption (4) in case q1x1 −

q2x2 > 0), then (x̂1, ŷ1) ≥C2−n−1 (x̂2, ŷ2) in the case where x̂2 =
x(h(q2, U2)) because x̂1 ≤ x(h(q1, U1)) and then it follows from (3)
that

2−n−1 max{0, x̂1 − x̂2} ≤ 2−n−1 max{0, x(h(q1, U1))− x(h(q2, U2))}
≤ x(h(q1, U1))−x(h(q2, U2))+y(h(q1, U1))−y(h(q2, U2)) = x̂1−x̂2+ŷ1−ŷ2,

If on the other hand x̂2 < x(h(q2, U2)), then 0 = ŷ2 ≤ ŷ1 and then we
conclude in the case where x̂1 > x̂2 that

(3.8) 2−n−1 max{0, x̂1 − x̂2} < x̂1 − x̂2 ≤ x̂1 − x̂2 + ŷ1 − ŷ2,
and in the case where x̂1 ≤ x̂2 we conclude by (3) that

(3.9) 2−n−1 max{0, x̂1− x̂2} = 0 ≤ x1−x2+y1−y2 = x̂1− x̂2+ ŷ1− ŷ2.
Hence we have (x̂1, ŷ1) ≥C2−n−1 (x̂2, ŷ2) in the case where x̂2 < x(h(q2, U2))
as well.

Thus it remains to consider the case where q1x1−q2x2 > 0 and hence
(3) holds but (4) does not hold. If ŷ2 = 0, then ŷ2 ≤ ŷ1 and the claim
follows by inequalities (7) and (8) as above. If ŷ2 > 0, then we have
q2 ≤ 1 and x̂2 = q2x2. If q1 ≤ 1, then it follows from (3) that (4) holds,
and since we assumed that this is not the case we must have q1 > 1
and therefore y1 < 0 so that x̂1 = x1 + y1 and ŷ1 = 0. Thus we have to
show that

x1 + y1 − q2x2 + 0− (y2 + (1− q2)x2) ≥ 2−n−1(x1 + y1 − q2x2),
or, equivalently

(3.10) x1 − x2 + y1 − y2 − 2−n−1(x1 + y1 − q2x2) ≥ 0.
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Since inequality (6) holds in this case as well we get (9) provided

2−n(x1 − x2)− 2−n−1(x1 + y1 − q2x2) ≥ 0.

Since y1 < 0 this inequality holds provided

(3.11) x1 − (2− q2)x2 ≥ 0.

But we assumed that (4) does not hold which by (2) and (3) implies
that

q2
x1 + x2
x2

> 2,

and (10) follows from this inequality because q2 ≤ 1 in this case as noted
above. This completes the proof of the fact that f is order-preserving.

Since 0 ∈ C, f(0) = 0, and f is order-preserving it follows that f
maps C into itself. �

Lemma 3.4. Let X, C, and f be as in Example 3.1 above. Then f is
continuous.

Proof. First we note that since the mapping g does not increase the
absolute value of the x-coordinate and leaves the sum of the coordinates
unchanged it follows from the definition of f that

(3.12) |x(f(Uj)(n+ 1))| ≤ 1

2
|x(Uj(n))|, n ≥ 1,

and

(3.13)∣∣∣x(f(Uj)(n+1))+y(f(Uj)(n+1))−
(
x(f(U)(n+1))+y(f(U)(n+1))

)∣∣∣
≤ 1

2

∣∣∣x(Uj(n)) + y(Uj(n))−
(
x(U(n)) + y(U(n))

)∣∣∣, n ≥ 1.

Now assume that Uj ∈ C, j ≥ 1, are such that limj→∞‖Uj−U‖X = 0
for some U ∈ C or equivalently,

(3.14) lim
j→∞

∞∑
n=1

2n|x(Uj(n))− x(U(n))| = 0,

and

(3.15) lim
j→∞

∞∑
n=1

∣∣x(Uj(n)) + x(Uj(n))− (x(U(n)) + y(U(n)))
∣∣ = 0.

First we consider the case where
∑∞

n=1(x(U(n)) + y(U(n))) = 0.
Since U ∈ C we have x(U(n)) + y(U(n)) = 0 and x(U(n)) ≤ 0 for all n
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and therefore f(U) = 0. By (13) limj→∞
∑∞

n=1(x(Uj(n))+y(Uj(n))) =
0 and hence by (3) we obtain

(3.16) lim
j→∞

∞∑
n=1

(
x
(
f(Uj)(n)

)
+ y
(
f(Uj)(n)

))
= 0.

Since limj→∞ x(Uj(n)) = x(U(n)) ≤ 0 for each n ≥ 1 we get limj→∞ x(f(Uj)(n)) =
0 for each n ≥ 1 and this result together with (12) and (11) imply
that limj→∞

∑∞
n=1 2n|x(f(Uj)(n))| = 0. When this result is combined

with (14) we get limj→∞ f(Uj) = 0 = f(U) in X in the case where∑∞
n=1(x(U(n)) + y(U(n))) = 0.
Suppose next that

∑∞
n=1(x(U(n)) + y(U(n))) > 0. Then it follows

from the defintion of q and (13) that

lim
j→∞

sup
n≥1

∣∣q(Uj)(n)− q(U)(n)
∣∣ = 0,

and this implies in turn that

lim
j→∞

sup
n≥1

∣∣∣x(f(Uj)(n)
)
− x
(
f(U)(n)

)∣∣∣ = 0.

Combining this fact with (11) and (12) we get

lim
j→∞

∞∑
n=1

2n
∣∣∣x(f(Uj)(n)

)
− x
(
f(U)(n)

)∣∣∣ = 0.

Since it follows from (3) and (13) that

lim
j→∞

∞∑
n=1

∣∣∣x(f(Uj)(n)
)
+y
(
f(Uj)(n)

)
−
(
x
(
f(U)(n)

)
+y
(
f(U)(n)

))∣∣∣ = 0.

we get the desired conclusion limj→∞ f(Uj) = f(U) in X in this case
as well. This completes the proof of the continuity of f on C. �

Finally we turn to the estimation of the cone spectral radii.

Lemma 3.5. Let X, C, and f be as in Example 3.1 above. Then
r̃C(f) ≥ 1 and rC(f) ≤ 1

2
.

Proof. First we show that r̃C(f) ≥ 1. Let k ≥ 1, choose j ≥ 1 such
that 2j−1 > k, and take

U(n) =

{
(2−n, 0), n = 2j−1,

(0, 0), for all other n ≥ 1.

Thus ‖U‖X = 1 + 2−2
j−1

and

fk(U)(n) =

{
(2−n−k, 0), n = 2j−1 + k,

(0, 0), for all other n ≥ 1,
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so that ‖fk(U)‖X = 1 + 2−2
j−1−k. Since j can be chosen arbitrarily

large we conclude that ‖fk‖C ≥ 1 and hence r̃C(f) ≥ 1.
Next we show that rC(f) ≤ 1

2
and first we note that if U(n) =

(0, 0), then f(U)(n+ 1) = (0, 0) and thus it follows from the fact that
f(U)(2p) = (0, 0) for every p ≥ 0 that fk(U)(n) = (0, 0) when k ≥ 1
and 2p ≤ n < 2p + k. Therefore

(3.17) fk(U)(n) = (0, 0), 1 ≤ n < 2k, k ≥ 1,

for all U ∈ C.
It follows from the definitions of q and f that there is an integer nU ≥

1 such that q(U)(n) ≤ 1
2

and q(f(U))(n) ≤ 1
2

when n ≥ nU . Hence

|x(f(U)(n + 1)| ≤ 1
4
|x(U(n))| when n ≥ nU and we have |x(f(U)(n +

1))+y(f(U)(n+1))| ≤ 1
2
|(x(U(n))+y(U(n))| for all n ≥ 1. Furthermore

we have q(fk(U))(n) ≤ 1
2

when n ≥ nU + k so we have in fact∣∣x(fk(U)(n+ k)
∣∣ ≤ 4−k

∣∣∣x(U(n))
∣∣∣, n ≥ nU ,

and∣∣∣x(fk(U)(n+k))+y(fk(U)(n+k))
∣∣∣ ≤ 2−k

∣∣∣(x(U(n))+y(U(n))
∣∣∣, n ≥ 1.

Combined with (15) these inequalities show that lim supk→∞ 2k‖fk(U)‖X ≤
‖U‖X and hence rC(f) ≤ 1

2
. �

We give four further examples where rC(f) = 0 and r̃C(f) = 1
but observe that these examples are not that significant since each
hypothesis that is dropped is quite reasonable (and e.g. the convexity
assumption is often included in the definition of a cone).

In all of these examples we take X = c0 = {U : Z+ → R :
limn→∞ U(n) = 0 } with norm ‖U‖X = supn≥1|U(n)| and let C be
a subset of the cone {U ∈ c0 : U(n) ≥ 0, n ≥ 1 } in c0. Hence C
is a normal cone (if x, y ∈ C, x ≤C y then ‖x‖X ≤ M‖y‖X for some
M <∞, in this case M = 1) and hypothesis (iv) of Theorem 2.1 holds.
In addition it follows that we have C ∩ (−C) = {0} in all these exam-
ples. In the first three of these examples the function f is continuous,
an assumption made in [4, Theorem 2.2] but not in Theorem 2.1.

In the first example the cone C is not convex but all other hypotheses
of Theorem 2.1 are satisfied.

Example 3.6. Let X = c0,

C = {U ∈ c0 : U(n) = U(1) ≥ 0, 1 ≤ n ≤ nU , U(n) = 0, n > nU ≥ 1 },

and define f : C → C by f(U)(n) = U(n+ 1), n ≥ 1. �
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In the second example the cone C is not closed in X (hence not
complete) but all other hypotheses of Theorem 2.1 are satisfied.

Example 3.7. Let X = c0,

C = {U ∈ c0 : U(n) ≥ 0, n ≥ 1, U(n) = 0, n ≥ nU ≥ 1 },

and define f : C → C by f(U)(n) = U(n+ 1), n ≥ 1. �

In the third example the function f is not order-preserving but all
other hypotheses of Theorem 2.1 are satisfied. A similar example is
given on page 526 in [4].

Example 3.8. Let X = c0,

C = {U ∈ c0 : U(n) ≥ 0, n ≥ 1 },

and define f : C → C by f(0) = 0 and

f(U)(n) = U(n+ 1)

(
U(n+ 1)

supj≥1 U(j)

)n
, n ≥ 1,

when U 6= 0. �

In the final example the function f is not continuous, nor order-
preserving, but all other hypotheses of both Theorems 2.2 and 2.1 are
satisfied.

Example 3.9. Let X = c0,

C = {U ∈ c0 : U(n) ≥ 0, n ≥ 1 },

and define f by

f(U)(n) =

{
2U(n+ 1), U ∈ Cf , n ≥ 1,

0, otherwise,

where

Cf =
{
U ∈ C : U(n+1) = 1

2
U(n), 1 ≤ n ≤ nU−1, U(n) = 0, n > nU ≥ 1

}
.

�
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