Mat-1.198 Scattering Theory

$9^{\text {th }}$ set of exercises, 9.4.2003

The exam will be on Tuesday, the 20th of May from 10.00 to 13.00 in U322.

1. Consider the one-dimensional potential scattering of the previous week. Derive the PML equation in the one-dimensional case: The stretching function

$$
F: \mathbb{R} \rightarrow \mathbb{C}, \quad x \mapsto \begin{cases}x-i \tau(a-x), & x<a \\ x, & a \leq|x| \leq b \\ x+i \tau(x-b), & x>b\end{cases}
$$

maps the real axis to a curve in the complex plane. Here $(a, b) \supset[-M, M]$ is the truncated computation domain.
2. Consider the PML equation in radial coordinates, i.e., the computational region B is a disc,

$$
\bar{D} \subset B=\left\{x \in \mathbb{R}^{2}| | x \mid<R\right\} \subset \mathbb{R}^{2} .
$$

Given a stretching function $\tau:[0, \infty) \rightarrow[0, \infty)$, calculate the PML equation using the polar coordinate representation for the Laplacian.
3. The previous example allows us to write the PML equation as

$$
\nabla \cdot A \nabla u+a k^{2} u=0
$$

where $A=A(x) \in \mathbb{C}^{2 \times 2}, a=a(x) \in \mathbb{C}$. Find this representation. In particular, what is A in Cartesian coordinates?

