Mat-1.198 Scattering Theory

$6^{\text {th }}$ set of exercises, 19.3.2003

1. Let $u(x, \alpha), x \in \mathbb{R}^{3} \backslash \bar{D}$ be the solution of the scattering problem by a sound-soft obstacle D,

$$
u(x, \alpha)=e^{i k \alpha \cdot x}+u_{\mathrm{sc}}(x, \alpha)
$$

and $A(\widehat{x}, \alpha)$ the corresponding far field pattern. Prove the reciprocity relation

$$
A(\widehat{x}, \alpha)=A(-\alpha,-\widehat{x}) .
$$

Hint: Starting from the Helmholtz representation for u_{sc}, show that

$$
A(\widehat{x}, \alpha)=\frac{1}{4 \pi} \int_{\partial D}\left(u_{\mathrm{sc}}(y, \alpha) \frac{\partial u}{\partial n}(y,-\widehat{x})-u(y,-\widehat{x}) \frac{\partial u_{\mathrm{sc}}}{\partial n}(y, \alpha)\right) d S
$$

and similarly,

$$
A(-\alpha,-\widehat{x})=\frac{1}{4 \pi} \int_{\partial D}\left(u(y,-\widehat{x}) \frac{\partial u_{\mathrm{inc}}}{\partial n}(y, \alpha)-u_{\mathrm{inc}}(y, \alpha) \frac{\partial u}{\partial n}(y,-\widehat{x})\right) d S .
$$

Deduce the result from the above representations.
2. Prove the above reciprocity relation for the far field pattern of the solution of the LippmannSchwinger equation,

$$
u(x, \alpha)=e^{i k \alpha \cdot x}-\int_{D} \Phi(x-y) q(y) u(y, \alpha) d y .
$$

Hint: Use the same formulas as above, integration being over the surface of a sphere $|x|=R$.
3. Derive the following two-potential formula: Let $A_{j}(\widehat{x}, \alpha), j=1,2$ be the far field patterns corresponding to the compactly supported potentials $q_{j}, j=1,2$, respectively, and denote by $u_{j}(x, \alpha)$ the corresponding acoustic fields with incoming plane wave with the direction α. Show that

$$
A_{1}(\widehat{x}, \alpha)-A_{2}(\widehat{x}, \alpha)=\frac{1}{4 \pi} \int u_{1}(y, \alpha)\left(q_{1}(y)-q_{2}(y)\right) u_{2}(y,-\widehat{x}) d y .
$$

This formula is central in inverse scattering theory.
Hint: Write

$$
\begin{aligned}
A_{1}(\widehat{x}, \alpha) & =\frac{1}{4 \pi} \int e^{-i k \widehat{x} \cdot y} q_{1}(y) u_{1}(y, \alpha) d y \\
& =\frac{1}{4 \pi} \int\left(u_{2}(y,-\widehat{x})-u_{2, \mathrm{sc}}(y,-\widehat{x})\right) q_{1}(y) u_{1}(y, \alpha) d y,
\end{aligned}
$$

and a similar formula for $A_{2}(\widehat{x}, \alpha)=A_{2}(-\alpha,-\widehat{x})$ and subtract.

