Mat-1.198 Scattering Theory

$4^{\text {th }}$ set of exercises, 26.2.2003

1. Consider the interior Dirichlet problem

$$
\begin{align*}
\left(\triangle+k^{2}\right) u & =0 \quad \text { in } D \tag{I.D.}\\
\left.u\right|_{\partial D} & =0
\end{align*}
$$

where $D=\left\{x \in \mathbb{R}^{2}| | x \mid<1\right\}$. Find a condition for the resonances k, i.e., for those values of k for which (I.D.) has a non-trivial solution.
2. As Problem 1, but consider the Neumann condition,

$$
\left.\frac{\partial u}{\partial n}\right|_{\partial D}=0
$$

What is the smallest resonance? How do the resonances change when the radius of the disc changes?
3. By using a spherical harmonics expansion, solve the scattering problem

$$
\begin{array}{rlr}
\left(\triangle+k^{2}\right) u & =0 \quad \text { in } \mathbb{R}^{2} \backslash \bar{D}=\left\{x \in \mathbb{R}^{2}| | x \mid>1\right\} \\
\left.u\right|_{\partial D} & =0 \\
u & =u_{\mathrm{inc}}+u_{\mathrm{sc}} &
\end{array}
$$

where $u_{\text {sc }}$ satisfies the radiation condition and

$$
u_{\mathrm{inc}}(x)=e^{i k \hat{\alpha} \cdot x}, \quad|\hat{\alpha}|=1
$$

(Hint: Use $\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(z \cos \theta+n \theta)} d \theta=i^{n} J_{n}(z).\right)$
4. The integral kernel of the single layer operator on the unit circle was

$$
L(t, s)=L_{1}(t, s) \ln \left(4 \sin ^{2} \frac{t-s}{2}\right)+L_{2}(t, s)
$$

where

$$
L_{1}(t, s)=-\frac{1}{4 \pi} J_{0}\left(2 k \sin \frac{t-s}{2}\right)
$$

and

$$
L_{2}(t, s)=\frac{i}{4} H_{0}^{(1)}\left(2 k\left|\sin \frac{t-s}{2}\right|\right)-L_{1}(t, s) \ln \left(4 \sin ^{2} \frac{t-s}{2}\right)
$$

is the regular part. We need to calculate $L_{2}(t, t)$. Calculate $L_{2}(t, t)$ by using the asymptotics of $H_{0}^{(1)}$ at the origin,

$$
H_{0}^{(1)}(z)=J_{0}(z)+\frac{2 i}{\pi}\left(\ln \frac{z}{2}+\gamma\right) J_{0}(z)+\sum_{k=1}^{\infty} a_{k} z^{2 k}
$$

