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1. Consider the interior Dirichlet problem(
4+k2)u = 0 in D

u
∣∣
∂D = 0

(I.D.)

whereD = {x∈ R2 | |x|< 1}. Find a condition for the resonancesk, i.e., for those values ofk for
which (I.D.) has a non-trivial solution.

2. As Problem 1, but consider the Neumann condition,

∂u
∂n

∣∣∣∣
∂D

= 0.

What is the smallest resonance? How do the resonances change when the radius of the disc
changes?

3. By using a spherical harmonics expansion, solve the scattering problem(
4+k2)u = 0 inR2\D = {x∈ R2 | |x|> 1}

u
∣∣
∂D = 0

u = uinc +usc

whereusc satisfies the radiation condition and

uinc(x) = eikα̂·x, |α̂|= 1.(
Hint: Use 1

2π
∫ 2π

0 ei(zcosθ+nθ)dθ = inJn(z).
)

4. The integral kernel of the single layer operator on the unit circle was
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)
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where
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)
is the regular part. We need to calculateL2(t, t). CalculateL2(t, t) by using the asymptotics ofH(1)

0
at the origin,
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