Aalto University

MS-A0401 Foundations of discrete mathematics
Gripenberg, Potka, Pöllänen, Tuhkanen, Ääri

Exercise 4

28.9-2.10.2015, week 40

Return your solutions to the P-questions and answer the S-questions not later than 5.10.2015 at 16.

Remember to write your name, student number and group!

P1. When a person wrote his social security number the result was $2 x 1189-321 W$ where the digit x was illegible. What is x ? The control letter W implies that when one forms a number out of the digits preceding it and divides that number by 31 , then the remainder is 28 .

One can, of course, solve this problem by testing all possibilities but here you should find an equation, from which you can (easily?) solve x and you can use the knowledge that $\bmod (201189321,31)=3, \bmod (10000000,31)=20$ and $[20]_{31}^{-1}=[14]_{31}$ and it is a good idea to write the number $2 x 1189321$ in the form $201189321+x \cdot 10000000$.

P2. Show, using the Euclidean algorithm, that the positive integers $11 n+3$ and $7 n+2$ are relatively prime for all $n \in \mathbb{Z}_{+}$.
Note! In the case where $n=1$ the algorithm works in a slightly different way than in the cases where $n \geq 2$.

P3. A wants to send a message to B and asks her to send her public RSA-algrithm key to A. However, C intercepts this message containing the key, which is $(21,5)$ and sends instead his own public key, which is $(34,11)$ to A. Next A sends a message, which encrypted is 15 to C although she believes she is sending it to B. Then C decrypts this message, reads it and sends it to B, encrypted with B:s public key.

What was the original message and what message does C send to B ?
Note! This is an example of a "Man-in-the-middle"-attack by B who only reads the message but does not change it.

P4. If you calculate $\bmod \left(13^{21}, 9\right)$ and $\bmod \left(13^{22}, 9\right)$ with Matlab (version R2015a) then the results are 7 and 4 . How can you see that this is not correct and what is the reason for that?

This calculation works with the following function that calculates $\bmod \left(a^{b}, n\right)$ (but does not check whether the arguments are something else than positive integers):

```
function y=pmod(a,b,n)
    y=1;
    z=mod(a,n);
    while b>0
        k=mod (b,2);
        if k==1
            y=mod(z*y,n);
        end
        z=mod(z*z,n);
        b=(b-k)/2;
    end
endfunction
```

Determine a function h so that if $m=a^{b}$ where a and b are positive integers and $\bmod (m, n)$ is calculated with the command $\operatorname{pmod}(\mathrm{a}, \mathrm{b}, \mathrm{n})$ then the program calculates $O(h(m))$ times the value of the mod-function (and h does not grow "unreasonably fast").
Hint: What would $\bmod \left(13^{22}, 9\right)$ be if $\bmod \left(13^{21}, 9\right)=7$?
P5. If you have to solve the equation $[a]_{n} \cdot[x]_{n}=[b]_{n}$ and $\operatorname{gcd}(a, n)=1$ there is an inverse $[a]_{n}^{-1}$ and the solution is $[x]_{n}=[a]_{n}^{-1}[b]_{n}$ (and this solution is unique as a congruence class). Determine the possible solutions in the case where $\operatorname{gcd}(a, n)=d>1$ in the following way.
(a) Show that if there is a solution, then $d \mid b$ and hence we assume below that this is the case.
(b) Let $c=a / d$ and $m=n / d$ (both of which are integers) and show that $\operatorname{gcd}(c, m)=1$.
(c) Let $e=b / d$ (which by assumption is an integer). Since $\operatorname{gcd}(c, m)=1$ by part (b) there is a number y so that $[y]_{m}=[c]_{m}^{-1}$, i.e., $c \cdot y=1+k \cdot m$. Show that $x=y \cdot e$ is a solution to the original equation (by showing that $a \cdot x=b+r \cdot n$).
(d) Show that $y \cdot e+j \cdot m$ is a solution as well for every $j \in \mathbb{Z}$, (but you don't have to show that in this way one gets exactly d different congruence classes $[x]_{n}$).

