MS-A0401 Foundations of discrete mathematics
Gripenberg, Potka, Pöllänen, Tuhkanen, Ääri

Exercise 2

14-18.9.2015, week 38
Return your solutions to the P-questions and answer the S-questions not later than 21.9.2015 at 16.00 .

Remember to write your name, student number and group!

P1. The function $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ is defined recursively in the following way

$$
f(n)= \begin{cases}1, & n=0 \\ 0, & n=1 \\ 5 \cdot f(n-1)-6 \cdot f(n-2), & n \geq 2\end{cases}
$$

(a) Calculate $f(5)$ by calculating $f(2), f(3)$ etc.
(b) Check that the expression $3 \cdot 2^{n}-2 \cdot 3^{n}$ satisfies the definition of f (so that you get another way of calculating $f(5)$).
(c) If $\lambda \neq 0$ is a number such that $y(n)=5 \cdot y(n-1)-6 \cdot y(n-2)$ when $y(n)=\lambda^{n}$, which equation (in which n does not appear) is satisfied by λ and what are the solutions to this equation?
(d) If y_{1} and y_{2} are solutions to the equation $y(n)=5 \cdot y(n-1)-6 \cdot y(n-2)$ then $y(n)=c_{1} y_{1}(n)+c_{2} y_{2}(n)$ is clearly (??) a solution as well. Derive the expression for the function f in part (b) using this result, the result of part (c) and the conditions $f(0)=1$ and $f(1)=0$.

P2. If we have a sequence of numbers $x=\left[x_{1}, x_{2}, \ldots x_{n}\right]$ then we can produce a new sequence where the elements are put in increasing order with the following algorithm:

```
function x=Jarj(x)
    n=max(size(x));
    for i=1:n
        for j=1:i
            if x(i)<x(j)
                x([i,j])=x([j,i]);
            end
        end
    end
endfunction
```

If x is a sequence of numbers with length $\mathrm{n} n$ then we let $v(n)$ be the number of comparisons ($\mathrm{x}(\mathrm{i})<\mathrm{x}(\mathrm{j})$) this algorithm performs when it calculates Jarj(x). Determine the smallest possible nonnegative numbers a and b so that $v \in O\left(n^{a} \log (n)^{b}\right)$.

P3. Determine the smallest possible equivalence relation in the set $A=\{1,2,3,4,5,6,7,8\}$ that contains the ordered pairs $[1,4],[2,5],[6,8]$ and $[7,4]$. (Smallest in the sense that it as a subset of $A \times A$ contains the least number of elements.) Determine the equivalence classes of the equivalence relation, i.e., a set of nonempty and disjoint subsets of A such that their union is A and two elements x and y belong to the same subset if and only if $[x, y]$ belongs to the equivalence relation.

P4. Let $\operatorname{Sur}(m, n)$ be the number of surjections from the set A to the set B when there are m elements in A and n elements in B. If you construct the surjections in the following way you can count how many they are as well:
(a) Fix some element $a_{0} \in A$ and then choose $f\left(a_{0}\right)$. In how many ways can $f\left(a_{0}\right)$ be chosen? Observe that each choice gives a different function.
(b) Next you define the function f in the set $A \backslash\left\{a_{0}\right\}$. There are two cases (that exclude each other):
(b-1) For some $a_{1} \neq a_{0}$ you define $f\left(a_{1}\right)=f\left(a_{0}\right)$ in which case f restricted to the set $A \backslash\left\{a_{0}\right\}$, i.e., the function $f_{\mid A \backslash\left\{a_{0}\right\}}$ is a surjection: $A \backslash\left\{a_{0}\right\} \rightarrow B$. How many such surjections are there? Express your answer with the aid of the Sur-function.
(b-2) For all $a \in A \backslash\left\{a_{0}\right\}$ you define $f(a)$ so that $f(a) \neq f\left(a_{0}\right)$ so that f restricted to the set $A \backslash\left\{a_{0}\right\}$, i.e., the function $f_{\mid A \backslash\left\{a_{0}\right\}}$ is a surjection: $A \backslash\left\{a_{0}\right\} \rightarrow B \backslash\left\{f\left(a_{0}\right)\right\}$. How many such surjections are there? Express your answer with the aid of the Sur-function.
(c) If you calculate $\operatorname{Sur}(m, n)$ with the aid of parts (a) and (b) as well as the sum and product rule, what formula do you get?
(d) Calculate $\operatorname{Sur}(4,3)$ with the aid of the result in part (c) taking into account that we, of course (?), have $\operatorname{Sur}(m, 1)=1$ when $m \geq 1$ and $\operatorname{Sur}(m, n)=0$ when $m<n$.

P5. If X and Y are nonempty sets and $f: X \rightarrow Y$ is a function then we can define the functions $f^{\rightarrow}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y)$ and $f^{\leftarrow}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ as follows:

$$
\begin{aligned}
& f^{\rightarrow}(A)=\{f(x) \in Y: x \in A\}, \quad A \in \mathcal{P}(X) \\
& f^{\leftarrow}(B)=\{x \in X: f(x) \in B\}, \quad B \in \mathcal{P}(Y)
\end{aligned}
$$

where $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ are the sets of subsets of X and Y.
(a) Show that if f is an injection then $f^{\leftarrow}\left(f^{\rightarrow}(A)\right)=A$ for all $A \subseteq X$.
(b) Show that if f is not an injection then there is a set $A \subseteq X$ so that $f^{\leftarrow}\left(f^{\rightarrow}(A)\right) \neq A$

Hint: In part (a) you have to show that $A \subseteq f^{\leftarrow}\left(f^{\rightarrow}(A)\right)$ and $f^{\leftarrow}\left(f^{\rightarrow}(A)\right) \subseteq A$ and one of these claims follows directly from the definition and does not depend on whether f is an injection or not. In part (b) you can choose the set A to conatin exactly one element.
Note! Usually one writes f instead of $f \rightarrow$ and often f^{-1} instead of $f \leftarrow$.

