

MS-A0401 Foundations of discrete mathematics Exercise 2 14–18.9.2015, week 38

Gripenberg, Potka, Pöllänen, Tuhkanen, Ääri

Return your solutions to the P-questions and answer the S-questions not later than 21.9.2015 at 16.00.

Remember to write your name, student number and group!

P1. The function $f : \mathbb{N}_0 \to \mathbb{Z}$ is defined recursively in the following way

$$f(n) = \begin{cases} 1, & n = 0, \\ 0, & n = 1, \\ 5 \cdot f(n-1) - 6 \cdot f(n-2), & n \ge 2. \end{cases}$$

- (a) Calculate f(5) by calculating f(2), f(3) etc.
- (b) Check that the expression $3 \cdot 2^n 2 \cdot 3^n$ satisfies the definition of f (so that you get another way of calculating f(5)).
- (c) If $\lambda \neq 0$ is a number such that $y(n) = 5 \cdot y(n-1) 6 \cdot y(n-2)$ when $y(n) = \lambda^n$, which equation (in which *n* does not appear) is satisfied by λ and what are the solutions to this equation?
- (d) If y_1 and y_2 are solutions to the equation $y(n) = 5 \cdot y(n-1) 6 \cdot y(n-2)$ then $y(n) = c_1y_1(n) + c_2y_2(n)$ is clearly (??) a solution as well. Derive the expression for the function f in part (b) using this result, the result of part (c) and the conditions f(0) = 1 and f(1) = 0.

P2. If we have a sequence of numbers $x = [x_1, x_2, \dots, x_n]$ then we can produce a new sequence where the elements are put in increasing order with the following algorithm:

If x is a sequence of numbers with length n n then we let v(n) be the number of comparisons (x(i) < x(j)) this algorithm performs when it calculates Jarj(x). Determine the smallest possible nonnegative numbers a and b so that $v \in O(n^a \log(n)^b)$.

P3. Determine the smallest possible equivalence relation in the set $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ that contains the ordered pairs [1, 4], [2, 5], [6, 8] and [7, 4]. (Smallest in the sense that it as a subset of $A \times A$ contains the least number of elements.) Determine the equivalence classes of the equivalence relation, i.e., a set of nonempty and disjoint subsets of A such that their union is A and two elements x and y belong to the same subset if and only if [x, y] belongs to the equivalence relation.

P4. Let Sur(m, n) be the number of surjections from the set A to the set B when there are m elements in A and n elements in B. If you construct the surjections in the following way you can count how many they are as well:

- (a) Fix some element $a_0 \in A$ and then choose $f(a_0)$. In how many ways can $f(a_0)$ be chosen? Observe that each choice gives a different function.
- (b) Next you define the function f in the set $A \setminus \{a_0\}$. There are two cases (that exclude each other):
 - (b-1) For some $a_1 \neq a_0$ you define $f(a_1) = f(a_0)$ in which case f restricted to the set $A \setminus \{a_0\}$, i.e., the function $f_{|A \setminus \{a_0\}}$ is a surjection: $A \setminus \{a_0\} \rightarrow B$. How many such surjections are there? Express your answer with the aid of the Sur-function.
 - (b-2) For all a ∈ A \ {a₀} you define f(a) so that f(a) ≠ f(a₀) so that f restricted to the set A \ {a₀}, i.e., the function f_{|A \ {a₀}} is a surjection: A \ {a₀} → B \ {f(a₀)}. How many such surjections are there? Express your answer with the aid of the Sur-function.
- (c) If you calculate Sur(m, n) with the aid of parts (a) and (b) as well as the sum and product rule, what formula do you get?
- (d) Calculate Sur(4,3) with the aid of the result in part (c) taking into account that we, of course (?), have Sur(m, 1) = 1 when $m \ge 1$ and Sur(m, n) = 0 when m < n.

 $\partial S = (S, A)$ ruS : Sur(A, 3) = 36

P5. If X and Y are nonempty sets and $f : X \to Y$ is a function then we can define the functions $f^{\to} : \mathcal{P}(X) \to \mathcal{P}(Y)$ and $f^{\leftarrow} : \mathcal{P}(Y) \to \mathcal{P}(X)$ as follows:

$$f^{\rightarrow}(A) = \{ f(x) \in Y : x \in A \}, \quad A \in \mathcal{P}(X), \\ f^{\leftarrow}(B) = \{ x \in X : f(x) \in B \}, \quad B \in \mathcal{P}(Y),$$

where $\mathcal{P}(X)$ and $\mathcal{P}(Y)$ are the sets of subsets of X and Y.

- (a) Show that if f is an injection then $f^{\leftarrow}(f^{\rightarrow}(A)) = A$ for all $A \subseteq X$.
- (b) Show that if f is not an injection then there is a set $A \subseteq X$ so that $f^{\leftarrow}(f^{\rightarrow}(A)) \neq A$

Hint: In part (a) you have to show that $A \subseteq f^{\leftarrow}(f^{\rightarrow}(A))$ and $f^{\leftarrow}(f^{\rightarrow}(A)) \subseteq A$ and one of these claims follows directly from the definition and does not depend on whether f is an injection or not. In part (b) you can choose the set A to conatin exactly one element.

Note! Usually one writes f instead of f^{\rightarrow} and often f^{-1} instead of f^{\leftarrow} .