MS-A0401 Foundations of discrete mathematics
Gripenberg, Potka, Pöllänen, Tuhkanen, Ääri

Exercise 1

7.9-11.9.2015, week 37

Return your solutions to the P-questions and answer the S-questions not later than 14.9.2015 at 16.

Remember to write your name, student number and group!
P1. Express the following sets in the form $\{$ expression : condition $\}$:
(a) $\left\{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1,2,4,8, \ldots\right\}$.
(b) $\{\ldots,-8,-3,2,7,12,17, \ldots\}$.
(c) $\{3,6,11,18,27,38, \ldots\}$.

P2. Express the following statements using and, or, not, $\rightarrow, \forall, \exists, \in \mathbb{R}$ and \mathbb{Z} (where \forall is the universal quantifier, \exists is the existence quantifier, \mathbb{R} is the set of real numbers and \mathbb{Z} is the set of integers) as well as normal mathematical notations and parentheses:
(a) "If x is a real number but not an integer then $x \cdot 3$ is not an integer either."
(b) "For every integer y there is an integer x so that $y=2+x$."
(c) "There is a negative real number x so that for all integers y it holds that $y<2 \cdot x$ or $y>x$."
Which of these statements are true?
P3. Show, using induction that

$$
\sum_{j=1}^{n} j^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad n \geq 1
$$

Hint: When one has to show that two expressions give the same result it is often (both doing caluculations with a computer or with pen and paper) easiest to show that their difference is 0 .
P4. If X is a set, then $\mathcal{P}(X)$ is the set of all subsest of X, that is $A \in \mathcal{P}(X)$ if and only if $A \subseteq X$. If now X and Y are two sets, is it always true that $\mathcal{P}(X \cup Y)=\mathcal{P}(X) \cup \mathcal{P}(Y)$? Give reasons for your answer!

P5. Prove the following claims:
(a) If a and b are integers and $\left(a^{2}-4 \cdot b\right) \cdot b^{2}$ is odd, then a and b are both odd.
(b) If a, b, and c are integers, $a^{3} \mid b$, and $b^{2} \mid c$, then $a^{6} \mid c$, where $m \mid n$ means that the integer n is divisible by the integer m, i.e., there is an integer k such that $n=k \cdot m$.
Hint: Use a direct proof for one of the claims and a proof by contradiction (or contrapositive proof) for the other.

