Teknillinen korkeakoulu
Alestalo
Matematiikka
Mat-1.1620 Mathematics II
3rd partial exam 7.5.2008, 16-19.
You may use a calculator but no "Formula books".

1. Calculate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}=\int_{C} x y d x-(x+y) d y
$$

where C is the line segment from $(0,0)$ to $(3,2)$.
Note: The above notation means that $\mathbf{F}(x, y)=x y \mathbf{i}-(x+y) \mathbf{j}$.
2. Calculate the z-coordinate

$$
\bar{z}=\frac{1}{A} \iint_{P} z d S .
$$

of the centroid of the hemisphere of radius R :

$$
P=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=R^{2}, z \geq 0\right\} .
$$

Hint: The area $A=2 \pi R^{2}$ and the formula $z=R \cos \varphi$ on the sphere can be taken for granted.
3. According to Green's Theorem in the plane we have

$$
\oint_{\partial R} F_{1} d x+F_{2} d y=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A
$$

where ∂R is the boundary curve of the plane region R. Using the formula, a) explain, why the area of R is given by the line integral

$$
A=\oint_{\partial R} x d y
$$

b) find line integrals that give the plane integrals

$$
\iint_{R} x d A \text { and } \iint_{R} y d A
$$

needed in the calculation of the centroid of R. (Note: the results are not unique)
c) Explain the values of both sides of the Theorem if the vector field \mathbf{F} has a potential; i.e. $\mathbf{F}=\nabla \varphi$.
4. a) Find a solution of the differential equation $y^{\prime}=y /(1+2 x)$ satisfying the condition $y(0)=3$.
b) Find the general solution of $y^{\prime \prime}-y^{\prime}-6 y=12 e^{-t}$.

Hint: The particular solution is of the form $A e^{-t}$.

