Teknillinen korkeakoulu
Alestalo
Matematiikka
Mat-1.1620 Mathematics II
2nd partial exam 1.4.2008, 16-19.
You may use a calculator but no "Formula books".

1. Let $f(x, y)=\cos (x+y)+\sin (x-y)$.
a) Show that the critical points of f are obtained from the equations

$$
\left\{\begin{array}{l}
\sin (x+y)=0 \\
\cos (x-y)=0
\end{array}\right.
$$

b) Classify the critical point $(\pi / 4,3 \pi / 4)$ as a local max/min/saddle.
2. Let $x, y, z>0$ and $x y z=1$. Show that

$$
x+y+z \geq 3
$$

Hint: Find the minimum of $x+y+z$ under the condition $x y z=1$.
3. Sketch the domain of integration for the iterated integral

$$
\int_{0}^{\pi / 2} d y \int_{y}^{\pi / 2} \frac{\sin x}{x} d x
$$

and evaluate it by changing the order of integration.
Note: You may regard $\frac{\sin x}{x}$ as a continuous function at $x=0$, so this is not an improper integral.
4. a) Using polar coordinates, calculate the y-coordinate of the centroid of the upper half disk $D=\left\{(x, y) \mid x^{2}+y^{2} \leq R^{2}, y \geq 0\right\}$; that is,

$$
\bar{y}=\frac{1}{A} \iint_{D} y d A .
$$

b) The temperature $T=T(\rho)$ of a ball B of radius R decreases linearly (with respect to ρ) from the value 100 to 0 ; i.e. $T(\rho)=100(1-\rho / R)$ for $0 \leq \rho \leq R$. Calculate the mean temperature

$$
\frac{1}{V} \iiint_{B} T d V
$$

of the ball.

