Mat-5.3741 Theory of Elasticity (5 cp) L

Spring 2007
Stenberg/Juntunen

Exercise 6

Problem 1
Let the stress tensor be given in the system of principal axis

$$
\boldsymbol{\sigma}=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right)
$$

Compute maximum value of the shear force and its direction. (Note: You will get three alternatives of which you choose the biggest.)
Problem 2
Consider the general constitutive law

$$
\sigma_{i j}=\sum_{k, l=1}^{3} C_{i j k l} \epsilon_{k l}
$$

with the relations

$$
\begin{aligned}
C_{i j k l} & =C_{k l i j} \\
C_{i j k l} & =C_{i j l k} \\
C_{i j k l} & =C_{j i k l}
\end{aligned}
$$

How many independent constants are there in $C_{i j k l}$?

Problem 3 (home exercise)

Find the expression for the biharmonic operator Δ^{2} in the polar coordinates (r, φ). Proove that Airy's function

$$
\Phi(r, \varphi)=\frac{\sigma_{0}}{4}\left[r^{2}-2 a^{2} \ln r-\frac{\left(r^{2}-a^{2}\right)^{2}}{r^{2}} \cos 2 \varphi\right]
$$

satisfies the biharmonic equation

$$
\Delta^{2} \Phi=0
$$

What are the stress components $\tau_{r r}, \tau_{r \varphi}$ and $\tau_{\varphi \varphi}$? Proove that

- on the circle $r=a$ the free boundary condition $\underline{\underline{\tau}} \underline{n}=\underline{0}$ is satisfied
- it holds true the limit

$$
\lim _{x \rightarrow \pm \infty} \tau(x, y)=\left(\begin{array}{cc}
\sigma_{0} & 0 \\
0 & 0
\end{array}\right)
$$

Draw the stress components on coordinate-axes $(x=0,|y| \geq a$ and $y=0$, $|x| \geq a)$. The problem is related to the situation shown in figure below.

