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Abstract. We show that the transfer functions that have a (continuous-time)
well-posed realization with a bounded input operator are exactly those that
are strong-H2 (plus constant feedthrough) over some right half-plane. The
dual condition holds iff the transfer function has a realization with a bounded
output operator. Both conditions hold iff the transfer function has a Pritchard–
Salamon (PS) realization.

A state-space variant of the PS result was proved already in [3], under
the additional assumption that the weighting pattern (or impulse response) is
a function (whose values are bounded operators). We illustrate by an example
that this does not cover all PS systems, not even if the input and output spaces
are separable.
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1. The definitions and results

In this section we first explain what a transfer function, a realization, a Pritchard–
Salamon (PS) system and a bounded input or output operator mean. Then we
present our main results in Theorem 1.2, followed by a discussion on the results
and historical remarks.

We state many well-known or straightforward facts without proof. Various
subsets of those facts can be found, e.g., [7], [4] and [10] in a general setting and
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in, e.g., [8], [1], [3] and [4, Section 6.9] in the PS setting (including alternative,
equivalent definitions).

In the simplest case, a linear time-invariant control system is governed by the
equations

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

x(0) = x0

(1.1)

(for t ≥ 0), where the generators [ A B
C D ] ∈ B(X × U, X × Y) are bounded linear

operators. In this article U, X and Y stand for complex Hilbert spaces of arbitrary
dimensions. We call u is the input (function), x the state trajectory and y the
output (function) of the system.

However, in this section we shall assume that A : Dom(A) → X is the (infini-
tesimal) generator of a strongly continuous semigroup of bounded linear operators
on X, and that B∗ : Dom(A∗) → X, C : Dom(A) → X and D : U→ Y are linear and
continuous. We equip Dom(A) with the graph norm (‖x‖2X + ‖Ax‖2X)1/2. Different
additional assumptions will be presented in Definitions 1.1 and 2.2 below.

We call B : U→ Dom(A∗)∗ (the adjoint of B∗ with pivot space X) the (control
or) input operator, C the (observation or) output operator, and D the feedthrough
operator of the system ( A B

C D
). We call C bounded if it has an extension in B(X, Y);

in this case we identify C with this extension. Similarly, B is bounded if B ∈ B(U, X)
(i.e., if B∗ extends to B(X, U)).

Definition 1.1.

(a): We call C admissible (for A) if for some (hence any) T > 0 there exists
γ > 0 such that

‖CA ·x0‖L2([0,T ];Y) ≤ γ‖x0‖X (x0 ∈ Dom(A)). (1.2)

(b): We call ( A B

C D
) a WPLS (on (U, X, Y)) with a bounded input operator if

B ∈ B(U, X) and C is admissible.
(c): We call ( A B

C D
) a WPLS (on (U, X, Y)) with a bounded output operator if

C ∈ B(X, Y) and B∗ is admissible for A∗.
(d): We call ( A B

C D
) a PS-system on (U,W, X, Y) if

1.: W is a Hilbert space and W ⊂ X densely and continuously,
2.: ( A B

C D
) is a WPLS with a bounded input operator, and

3.: ( A B

C D
) restricts to a WPLS on (U,W, Y) with a bounded output oper-

ator.
(e): We call ( A∗ C∗

B∗ D∗ ) the dual system of ( A B

C D
).

Further details on the above type of systems are given in Section 2.
If B and C are bounded, then B∗ and C are admissible and hence then ( A B

C D
)

is of the types (b), (c) and (d).
The dual system of a WPLS with a bounded input operator is a WPLS with

a bounded input operator, and vice versa.
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The semigroup A extends to a strongly continuous semigroup on X−1 :=
Dom(A∗)∗, isomorphic to the original one, and its generator is an extension of A
and belongs to B(X, X−1). We denote these extensions by the same letters (A or
A). (These extensions and X−1 are not needed for systems of type (c) or (d); cf.
(1.3) and (1.5).)

The operator B∗ is admissible for A∗ iff for some (hence any) T > 0 there
exists β < ∞ such that for all u ∈ L2([0, T ]; U) we have

BT u :=
∫ T

0

A T−sBu(s) ds ∈ X (1.3)

and ‖BT u‖X ≤ β‖u‖L2([0,T );U).
Therefore, the condition (d)3. holds iff A |W is a strongly continuous semi-

group on W (by AW we denote its generator), C|Dom(AW)
extends to B(W, Y), and

for some T > 0 and β < ∞ we have

BT u ∈ W and ‖BT u‖W ≤ β‖u‖2 (u ∈ L2([0, t]; U)). (1.4)

(The alternative condition ‖B∗
W(A ·

W)∗x0‖L2([0,T ];U) ≤ β‖x0‖W would be uncom-
fortable, since it would require us to take the adjoints with the pivot space W
instead of X.)

The transfer function D̂ of a system of type (b), (c) or (d) is defined by

D̂(s) := C(s−A)−1B + D (s ∈ σ(A)c). (1.5)

We call the system ( A B

C D
) a realization of D̂ . We identify holomorphic functions

that coincide on some right half-plane, hence it suffices that (1.5) holds on some
right half-plane contained in σ(A)c.

For any α ∈ R, we set C+
α := {s ∈ C

∣∣ Re s > α}. By H2(C+
α ; Y) we denote

the Hilbert space of holomorphic functions F : C+
α → Y such that

‖F‖H2
α

:=
1√
2π

sup
r>α

‖F (r + i·)‖L2 < ∞. (1.6)

The operator C is admissible for A iff there exists α ∈ R such that

C(· −A)−1x0 ∈ H2(C+
α ; Y) for every x0 ∈ X. (1.7)

Now we are ready to state our main results:

Theorem 1.2. Let β ∈ R and let D̂ be a holomorphic function C+
β → B(U, Y). Then

the following hold.

(b): D̂ has a realization with a bounded input operator and D = 0 iff there exists
α ∈ R such that D̂u0 ∈ H2(C+

α ; Y) for all u0 ∈ U.
(c): D̂ has a realization with a bounded output operator and D = 0 iff there

exists α ∈ R such that D̂ (̄·)∗y0 ∈ H2(C+
α ; U) for all y0 ∈ Y.

(d): D̂ has a realization as a PS-system with D = 0 iff the conditions in (b)
and (c) hold.
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(The proof is given in Section 3.) Thus, D̂ has a realization with a bounded
input operator iff D̂ − D satisfies the condition in (b) for some D ∈ B(U, Y) (in
which case D = lims→+∞ D̂(s)). Analogous comments apply to (c) and (d). Before
we go on to explain Theorem 1.2 and its history, we define a few more concepts.

The (bilateral) Laplace transform of u is defined by û(s) :=
∫∞
−∞ e−stu(t) dt

for those s ∈ C for which the integral converges strongly. With initial state 0 and
input u ∈ L2(R+; U), the output y can be defined through ŷ = D̂ û. This determines
the I/O map D : u 7→ y of the system and corresponds to (1.1) in a weak sense,
as explained in Section 2.

Set L2
α := eα·L2 = {f

∣∣ e−α·f ∈ L2}. Finally, recall that the Paley–Wiener
(and Plancherel) Theorem holds also in the infinite-dimensional case:

Lemma 1.3. The Laplace transform is an isometric isomorphism of L2
α(R+; U)

onto H2(C+
α ; U). Moreover, every element of H2(C+

α ; U) has a radial limit function
in L2(α + iR; U) with the same norm.

(See, e.g., [4, Lemma D.1.15] for the proof. We use the measure m/2π on
α + iR.)

The conditions in (b), (c) and (d) of Theorem 1.2 become equivalent if
dim U, dim Y < ∞ (and in that case a fourth equivalent condition is that D̂ ∈
H2(C+

α ;B(U, Y)), a fifth one that Du = f ∗ u where f ∈ L2
α(R+;B(U, Y)) for some

α ∈ R). Except for (d), this case is mostly covered by Theorem 5.2 of [5] (there
the scalar field is real but the same proof still applies).

The impulse response (or weighting pattern) R of a finite-dimensional system
means the output of the system when the input equals the unit impulse δ (with
initial state x0 = 0). Thus, R̂ = D̂ δ̂ = D̂ , where D̂ is the transfer function of
the system. Therefore, with input u the output formally becomes R ∗ u. All of the
above can be extended to very general systems by defining R through R̂ = D̂ .

If, e.g., B and C are bounded, then R can be identified with the function
f : R+ → B(U, Y) given by

f(t) := CA tB + Dδ. (1.8)

For more general systems, we only know that R is a causal distribution, be-
ing the inverse Laplace transform of the bounded analytic function (on some
right half-plane) D̂ . For any WPLS with a bounded input operator B and zero
feedthrough D = 0, we can identify the impulse response R with the operator
R := C B ∈ B(U, L2

α(R+; Y)) (for some α ∈ R), where C ∈ B(X, L2
α(R+; Y)) is

the unique extension of CA (cf. (1.2) and (1.7); see Sections 2 and 4 for further
details).

In [3], Kaashoek, Ran and van der Mee essentially assumed that (D = 0 and)
the impulse response is given by a function, i.e., that there exist f : R+ → B(U, Y)
and α ∈ R such that Du = f ∗ u for all u ∈ L2 (or equivalently, such that
f̂ = D̂). Then they showed that D has a PS-realization iff fu0, f

∗y0 ∈ L2
α for each

u0 ∈ U, y0 ∈ Y. Their condition is obviously equivalent to ours in the case that
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f really is a function R+ → B(U, Y) (see Section 4 for details). To show that our
result is a strict generalization of theirs, we construct in Section 4 a PS-system
whose impulse response C B cannot be represented by a (B(U, Y)-valued) function;
in particular, no f : R+ → B(U, Y) satisfies fu0 = C Bu0 a.e. for every u0 ∈ U.

If n := dim U < ∞, then B(U, L2
α(R+; Y)) = L2

α(R+; Y)n = L2
α(R+;B(U, Y))

(with equivalent norms), and the characterization of [3] applies. Similarly, it also
applies whenever dim Y < ∞. See Corollaries 6.9.7 and 6.9.8 of [4] for more on
these cases.

The existence parts of the results of [5], [3] and ours all use the shift-semigroup
systems of Proposition 2.3. The converses are rather straightforward.

In the literature preceding [1], usually only smooth PS-systems were studied
(i.e., those satisfying Dom(AV) ⊂ W). The solutions of LQR and four-block H∞

problems for smooth PS-systems can be found in [8] and for general PS-systems
(and for more general WPLSs) in [4]. Variants of Theorem 1.2 under additional
stability or other constraints can be found in [4, Section 6.9]. Any of them can
easily be observed from the proof in Section 3.

In Section 2 general WPLSs and their relation to PS-systems will be further
explored. In Section 3 contains the proof of Theorem 1.2. In Section 4 we shall
construct the counter-example mentioned above.

2. Well-posed linear systems

We list here some definitions and properties concerning well-posed linear systems,
see [7] (or, e.g., [4] or [10]) for further details. All corresponding definitions in
Section 1 are special cases of these.

When A, B and C are as explained above Definition 1.1 and the vector
D̂(z) ∈ B(U, Y) is given for some z ∈ σ(A)c, the quadruple (A,B, C, D̂) is called a
system node. The transfer function of the system node is defined by

D̂(s) := D̂(z) + (s− z)C(s−A)−1(z −A)−1B (s ∈ σ(A)c). (2.1)

(In fact, the correct name would be “characteristic function”, but the two coincide
on a right half-plane, and the difference elsewhere is insignificant in this article.)
If B or C is bounded, then D := lims→+∞ D̂(s) exists and D̂ = D +C(·−A)−1B,
as in (1.5).

If C is admissible for A, B∗ is admissible for A∗, and D̂ is bounded on some
right half-plane, then (A,B, C, D̂) is called a well-posed linear system (WPLS) (or
abstract linear system or Salamon–Weiss system). Obviously, then also its dual
system (A∗, C∗, B∗, D̂ (̄·)∗) is a WPLS. These definitions are in accordance with
Definition 1.1; e.g., (A,B, C, D̂) “a WPLS with a bounded input operator” iff it
is a WPLS and B is bounded (similarly for C).
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For any x0 ∈ X and û ∈ H2(C+
ω ; U), ω ∈ R, the state x and output y of a

WPLS (A,B, C, D̂) are defined through

x̂ = (· −A)−1x0 + (· −A)−1Bû (2.2)

ŷ = C(· −A)−1x0 + D̂ û (2.3)

(on a right half-plane where the right-hand-side is well defined). Note that all
above functions are holomorphic. It follows that x : R+ → X becomes continuous
and y ∈ L2

α(R+; Y) for some α ∈ R, as we shall explain later. First we introduce
some more notation.

We set (τ tu)(s) := u(t + s) and π±u := χR±u, where χE(t) :=
{

1, t ∈ E;

0, t 6∈ E
,

R+ := [0,+∞) and R− := (−∞, 0). We identify any function with its zero exten-
sion (hence π+ becomes a projection on L2(R; U)).

By H∞(C+
ω ;B(U, Y)) (or H∞ω ) we denote the space of bounded holomorphic

functions C+
ω → B(U, Y) with norm ‖D̂‖H∞ω := sups∈C+

ω
‖D̂(s)‖B(U,Y).

It is well known that to each H∞ω (transfer) function corresponds a unique
I/O map D : u 7→ y and conversely [9]:

Proposition 2.1. Let ω ∈ R. Any D̂ ∈ H∞(C+
ω ;B(U, Y)) determines uniquely a map

D : L2
ω(R; U) → L2

ω(R; Y) by

(D̂u)(s) = D̂(s)û(s) (s ∈ C+
ω , u ∈ L2

ω(R+; U)). (2.4)

The map D̂ 7→ D is an isometry of D̂ ∈ H∞(C+
ω ;B(U, Y)) onto the subspace

of all D ∈ B(L2
ω(R; U), L2

ω(R; Y)) that satisfy Dτ t = τ tD (t ∈ R) and π−Dπ+ = 0.

In the literature, there are many equivalent definitions of “ω-stable WPLSs”.
We shall give below one of them (from [6]), whose algebraic formulations are very
useful in the proof of Theorem 1.2. Then we shall explain the connection of this
definition to the (above) definition of a WPLS.

Definition 2.2 (WPLS). Let ω ∈ R. An ω-stable well-posed linear system on (U, X, Y)
is a quadruple Σ =

[ A B
C D

]
, where A t, B, C , and D are bounded linear operators

of the following type:
1. A t : X → X (t ≥ 0) is a strongly continuous semigroup of bounded linear

operators on X satisfying supt≥0 ‖e−ωtA t‖X < ∞;
2. B : L2

ω(R; U) → X satisfies A tBu = Bτ tπ−u for all u ∈ L2
ω(R; U) and t ∈ R+;

3. C : X→ L2
ω(R; Y) satisfies C A tx = π+τ tC x for all x ∈ X and t ∈ R+;

4. D : L2
ω(R; U) → L2

ω(R; Y) satisfies τ tDu = Dτ tu, π−Dπ+u = 0 and π+Dπ−u =
C Bu for all u ∈ L2

ω(R; U) and t ∈ R.

Given a WPLS ( A B

C D
) on (U, X, Y), we denote its semigroup by A , its growth

bound by ωA := inf{t−1 log ‖A t‖ ∣∣ t > 0} < ∞, and its transfer function by D̂ . For
any ω > ωA, we define D as in Proposition 2.1 (indeed, D̂ ∈ H∞ω ) and B by

Bu := lim
t→∞

∫ t

0

A rBu(−r) dr (u ∈ L2
ω(R; U)) (2.5)
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(the integral converges in X−1 and the limit in X), and by C ∈ B(X, L2
ω(R+; Y))

we denote the unique extension of CA : Dom(A) → L2
ω(R+; Y). This quadruple

[ A B

C D
] is an ω-stable WPLS on (U, X, Y).
Conversely, for any ω-stable WPLS Σ = [ A B

C D
] on (U, X, Y) there exist a

unique WPLS (A,B, C, D̂) that is related to Σ as above (necessarily ω ≥ ωA). In
particular, an ω-stable WPLS is an ω′-stable WPLS for any ω′ ≥ ω (we identify
B, C and D with their unique extensions/restrictions obtained by changing ω).

The operator Bt of (1.3) satisfies Bt := Bτ tπ−, and the formulas (2.2)
and (2.3) are equivalent to the equations

x(t) = A tx0 + Btu (t ≥ 0), y = C x0 + Du. (2.6)

(Also (1.1) and (1.5) hold for whenever D := lims→+∞ D̂(s) exists; we just
have to replace C by its Weiss extension if C is unbounded.)

Dietmar Salamon has shown that any H∞ω function has a realization [5]:

Proposition 2.3. Let ω ∈ R, D̂ ∈ H∞(C+
ω ;B(U, Y)). Then D̂ has the ω-stable

realizations

Σω :=

[
π+τ π+Dπ−

I D

]
(2.7)

on (U,L2
ω(R+; Y), Y) and

Σω :=

[
τπ− π−

π+Dπ− D

]
(2.8)

on (U,L2
ω(R−; U), Y), where D is defined by (2.4).

Now we have presented general WPLSs and the machinery needed in the proof
of the main result. In which sense WPLSs are more general than PS-systems?

Given a WPLS [ A B

C D
] on (U, X, Y), the system [ A B

0 0 ] is a PS-system (on
(U, X,Dom(A∗)∗, Y)) and [ A 0

C 0 ] is a PS-system (on (U, Dom(A), X, Y)). Thus, PS-
systems allow for as much unboundedness as WPLSs for B and C but not si-
multaneously, thus posing also much stronger conditions on the I/O map D .
E.g., in the parabolic case with A invertible, a WPLS typically has the opera-
tors A−1/2B : U → X and CA−1/2 : X → Y bounded [7, Theorem 5.7.3], hence
CA−1 is bounded on Ran(B); in the case of a PS-system we see that CA−1/2 is
bounded on Ran(B) (take X := V). Thus, in certain sense, the distance of Ran(B)
and Dom(C) (the sum of the unboundednesses of B and C) can be twice as much
in a WPLS as in a PS-system.

3. The proof of Theorem 1.2

In this section we present three auxiliary results and then we use them to prove
Theorem 1.2.

First we note that strong H2 functions are H∞ on any smaller half-plane:
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Lemma 3.1 (“H2
strong”). Let α ∈ R and D̂ : C+

α → B(U, Y) be such that D̂u0 ∈
H2(C+

α ;B(U, Y)) for every u0 ∈ U. Then

M := sup
‖u0‖U≤1

‖D̂(·)u0‖H2(C+
α ;Y) < ∞, (3.1)

D̂ ∈ H∞(C+
ω ;B(U, Y)) for any ω > α, and D := lims→+∞ D̂(s) = 0.

Proof. By Theorem 3.10.1 of [2], D̂ is holomorphic. By the closed-graph theorem,
(3.1) holds (if un → 0 in U and D̂un → f in H2

α, then ΛD̂un → Λf in H2(C+
α ;C)

and hence ΛD̂(s)un → Λf(s) for each s ∈ C+
α , Λ ∈ Y∗, although D̂(s)un →

D̂(s)0 = 0 for each s ∈ C+
α , hence then f ≡ 0 on C+

α ).
If U = C = Y, then we have ‖D̂‖H∞ω ≤ ((ω − α)/2)−1/2M , by, e.g., (6.4.3) of

[2]. In general, ‖ΛD̂u0‖H∞ω ≤ ((ω − α)/2)−1/2M when ‖u0‖U ≤ 1 and ‖Λ‖Y∗ ≤ 1,
hence ‖D̂‖H∞ω ≤ ((ω − α)/2)−1/2M → 0. In particular, D = 0. ¤

If D̂ is “dual-H2
strong”, then D maps L2 to the set of continuous functions:

Lemma 3.2. Let α ∈ R and D̂ : C+
α → B(U, Y) be such that D̂ (̄·)∗y0 ∈ H2(C+

α ; U)
for all y0 ∈ Y. Then

M := sup
‖y0‖U≤1

‖D̂ (̄·)∗y0‖H2(C+
α ;U) < ∞, (3.2)

D̂ ∈ H∞(C+
ω ;B(U, Y)) for any ω > α, D := lims→+∞ D̂(s) = 0, and Du is contin-

uous and ‖e−αt(Du)(t)‖Y ≤ M‖u‖L2
α

for all t ∈ R and u ∈ L2
α(R; U).

The proof is based on the fact that when û ∈ H2, we have D̂ û ∈“weak-H1”
(see the proof), hence its Fourier transform is continuous (hence so is Du).

Proof. Obviously, D̂ (̄·)∗ is holomorphic iff D̂ is, so the first three claims follow
from Lemma 3.1 and Proposition 2.1.

1◦ Assume first that u ∈ C1
c (R+; U) (i.e., that u is continuously differentiable

and has a compact support). Then Du is continuous, by [7, Corollary 4.6.13(i)]
(and Proposition 2.3).

2◦ By the (Hölder–)Schwarz Inequality and Lemma 1.3, the L1(α + iR; U)
norm of 〈D̂ û, y0〉Y = 〈û, D̂∗y0〉U, when ‖y0‖Y ≤ 1, is at most

‖û‖L2(α+iR;U)‖D̂∗y0‖L2(α+iR;U) = M‖û‖L2(α+iR;U) = M‖u‖L2
α
. (3.3)

We have f = ̂̂
f(−·)/2π and ‖f̂‖∞ ≤ ‖f‖1, hence ‖f‖∞ ≤ ‖f̂‖L1(iR;U), for

any f ∈ L1(R+; U) such that f̂ ∈ L1(iR; U). From this and (3.3) we conclude that
‖e−α·〈Du, y0〉Y‖∞ = M‖u‖L2

α
when ‖y0‖Y ≤ 1. Thus, ‖e−αt(Du)(t)‖Y ≤ M‖u‖L2

α

for all t. By time-invariance, the claim holds for any u ∈ C1
c (R; U).

3◦ Let now u ∈ L2
α(R; U) be arbitrary. Choose {un} ⊂ C1

c (R; U) such that
un → u in L2

α as n → +∞ (Proposition 3.3). By the above, e−α·Dun converges
uniformly, hence the limit, say e−α·y, is continuous and ‖e−α·y‖∞ ≤ M‖u‖L2

α
. But

Dun → Du in L2
ω, hence a subsequence converges a.e., hence Du = y. ¤
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We used above the following well-known facts:

Proposition 3.3 (L2
α). Let J ⊂ R be an interval and α ∈ R. The space L2

α(J ; U) is a
Banach space, and the space C1

c (R; U) is dense in L2
α(J ; U). If fn → f in L2

α(J ; U),
as n →∞, then a subsequence converges pointwise a.e. on J .

(For L2 the proofs are the same as in the scalar case [4, Section B.3], and
L2

α = eα·L2.)
Now we can prove the main result. Part “if” of (c) will be deduced from

Lemma 3.2, the rest of (b) and (c) follow easily from (1.7) and duality. “Only if”
of (d) follows, and “if” of (d) requires a longer construction.

Proof of Theorem 1.2: “Only if” of (b): If D̂ is the transfer function of a WPLS
( A B

C D
) on (U, X, Y) (for some X) with D = 0 and a bounded input operator B ∈

B(U, X), then, by (1.7), there exists α ∈ R such that C(· − A)−1Bu0 ∈ H2(C+
ω ; Y)

for all u0 ∈ U. By (1.5), D̂ = C(· −A)−1B.
“Only if” of (c): Apply the above to the dual system.
“If” of (c): Assume now that D̂ (̄·)∗y0 ∈ H2(C+

α ; U) for all y0 ∈ Y. Pick some
ω > α and set X := L2

ω(R−; U). By Lemma 3.2, D̂ ∈ H∞ω (and D = 0), hence (2.8)
defines a WPLS [ A B

C D
] on (U, X, Y). By Lemma 3.2, we have C̃ ∈ B(X, Y), where

C̃u := (Du)(0). But C u = π+Du, hence

C̃u = (C u)(0) = CA 0u = Cu for all u ∈ Dom(A). (3.4)

Thus, C is “bounded”.
“If” of (b): Assume that D̂u0 ∈ H2(C+

α ; Y) for all u0 ∈ U. Apply the proof of
(c) above to D̂ (̄·)∗ and take the dual of the resulting system to complete the proof
of (b).

Remark: by replacing X by RXR = L2
ω(R+; U) (where (Rf)(t) := f(−t); thus

A 7→ RAR, B 7→ RB and C 7→ CR), we observe that, for this D̂ , the WPLS
(2.7) has a bounded input operator and D = 0.

(d) “Only if” follows from (b), (c) and Definition 1.1(d), so we assume that
the conditions in (b) and (c) hold and construct a PS-realization of D̂ . Fix some
ω > α and define [ A B

C D
] by (2.7). Set W := {π+Dπ−u

∣∣ u ∈ L2
ω(R−; U)} (the

Hankel range), and

‖x0‖2W := ‖x0‖2L2
ω

+ inf
u∈L2

ω, π+Dπ−u=x0

‖u‖2L2
ω

(x0 ∈ X). (3.5)

(One easily verifies that this makes W an inner product space.)
1◦ [ A B

C D
] is an ω-stable WPLS on (U,W, Y): Define

X := Ker(B)⊥ ⊂ L2
ω(R−; U). (3.6)

Then ‖Bu‖2W = ‖Bu‖2L2
ω

+ ‖u‖2L2
ω

for all u ∈ X . Consequently, the restriction
T : X → W of B := π+Dπ− satisfies ‖Tu‖ ≥ ‖u‖; it is also onto, hence bound-
edly invertible. Consequently, W is complete (since X is), hence a Hilbert space.
Moreover, W ⊂ L2

ω continuously.
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For every t > 0 we have Bτ tπ− = π+τ tDπ− = π+τB = A tB, hence

‖A tBu‖2W = ‖π+τ tBu‖2W + ‖τ tu‖2L2
ω
≤ e2ωt‖Bu‖2W (u ∈ X ), (3.7)

hence ‖A t‖B(W) ≤ eωt. Thus, A |W is an ω-stable semigroup on W, because
its semigroup properties are inherited from A . Similarly, ‖A tBu − Bu‖2W ≤
‖π+τ tBu−Bu‖2L2

ω
+ ‖τ tu− u‖2L2

ω
, as t → 0+, hence A |W is strongly continuous.

Because X ⊂ L2
ω is closed, the orthogonal projection P : L2

ω → X is con-
tinuous, hence so is B = TP ∈ B(L2

ω,W). Obviously, C remains continuous with
this stronger topology of W ⊂ L2

ω and the other properties of the WPLS (2.7) are
preserved. It follows that Σ is an ω-stable WPLS on (U,W, Y).

2◦ The output operator for (U,W, Y) is “bounded”: Define C̃ : W → Y by
C̃Bu := (Du)(0) (i.e., C̃ := (DT−1)̇(0)) for any u ∈ X . By the proof of (b) above,
C̃ is bounded (since T−1 ∈ B(W,X ) and (D ·)(0) ∈ B(L2

ω, Y)). But, for any u ∈ X
and t ≥ 0, we have

C̃A tBu = C̃Bτ tu = (Dτ tu)(0) = (Du)(t) = (π+Dπ−u)(t) = (C Bu)(t), (3.8)

i.e., C̃A x0 = C x0 (= x0 ∈ W) for all x0 ∈ B[X ] = W, Thus, C̃ is an extension of
C, hence C is “bounded”.

3◦ [ A B

C D
] is a PS-system on (U,W,V, Y) when we define V to be the closure

of W in X = L2
ω(R+; Y): Indeed, 1. of Definition 1.1(d) follows because W ⊂ X

continuously (by (3.5)) and 3. was established in 1◦ and 2◦, so only 2. remains to
be shown.

By 1◦, A tx0 ∈ W for all x0 ∈ W. Since A t ∈ B(X), it follows that A t[W̄] ⊂
W̄, i.e., that A tx0 ∈ V for all x0 ∈ V, for any t ≥ 0. Consequently, A is an ω-stable
strongly continuous semigroup on V (since A is on X, as noted in Proposition 2.3).

Moreover, Ran(B) = W ⊂ V. Therefore, [ A B

C D
] is a WPLS on (U,V, Y),

because the properties 1.–4. of Definition 2.2 are inherited from those of the WPLS
[ A B

C D
] on (U, X, Y). (In the sequel, we shall use the subindices V and X, respectively,

for these two systems and their components.) Thus, it only remains to be shown
that BV bounded.

By the remark in the proof of (b), the input operator BX for X is bounded
(BX ∈ B(U, X)).

The map C is sometimes called the state-to-output map of Σ. The state-
to-output map of the dual of ΣX is given by Bd

X := RB∗
X and that of ΣV by

Bd
V := RB∗

V . (In control theory, the adjoint B∗ is taken with respect to the L2

inner product regardless of stability, i.e., the dual of L2
ω is identified with L2

−ω,
as in (3.9). See [7, Lemma 3.5.9(i) and Theorem 6.2.3] or [4, p. 157] for further
details.)

Given any x0 ∈ Dom(A∗V), we have∫

R
〈Bd

Vx0,Ru〉U dm =
∫

R
〈B∗

Vx0, u〉U dm = 〈x0, Bu〉V = 〈x0, Bu〉X (3.9)

=
∫

R
〈B∗

Xx0, u〉U dm =
∫

R
〈Bd

Xx0,Ru〉U dm (3.10)
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for all u ∈ L2
ω(R+; U), hence B∗

V(A t
V)∗x0 = (Bd

Vx0)(t) = (Bd
Xx0)(t) = B∗

X (A t
X )∗x0

for all t ≥ 0. Set t = 0 to observe that B∗
V = B∗

X on Dom(A∗V), hence also B∗
V is

bounded (having the extension B∗
X |V ∈ B(V, U)), hence so is BV . ¤

N.B. In Theorem 1.2, the WPLS (both WPLSs in (d)) can be made α-stable
iff D̂ ∈ H∞(C+

α ;B(U, Y)) (just take ω = α in the above proof to observe this).
Moreover, in (c) the norm ‖C‖B(X,Y) can be made ≤ M , where M is given by (3.2)
(see the proof of (c)); a dual claim holds for (b). See [4, Theorem 6.9.1] for further
details.

The above choice ofW in (d) is from [3]. It was recently pointed to us that the
system on (U,W, Y) in the above proof is called the input normalized realization
and that the system on (U,V, Y) the output normalized realization (or the reduced
shift realization) of D̂ . Further details on such realizations are given in [7].

4. A PS-system whose impulse response is not a function

In this section we establish the counter-example mentioned at the end of Section 1.
By Theorem 1.2(d), it suffices to construct a function D̂ ∈ H2

strong(C+;B(U)) such
that D̂ (̄·)∗ ∈ H2

strong(C+;B(U)) but D̂ 6= f̂ for every function f : R+ → B(U) (such
that fu0 is Laplace transformable for each u0 ∈ U). Such a function D̂ will be
achieved in Lemma 4.4, the input and output space U = Y being separable.

Naturally, by F ∈ H2
strong(C+;B(U, Y)) we mean that F : C+ → Y is holomor-

phic and

‖F‖H2
strong

:= sup
‖u0‖≤1

‖Fu0‖H2 < ∞, (4.1)

where H2 := H2
0 and C+ := C+

0 . See also Lemma 3.1.
When we identify a function F ∈ H2

strong(C+;B(U, Y)) with the corresponding
multiplication map u0 7→ Fu0, the following result holds:

Lemma 4.1. We have H2
strong(C+;B(U, Y)) = B(U,H2(C+; Y)), isometrically.

Proof. If V ∈ B(U, H2(C+; Y)), then, obviously, F : u0 7→ (V u0)(s) is linear
and bounded U → Y for any s ∈ C+, hence then F ∈ H2

strong(C+;B(U, Y)), by
Lemma 3.1. This establishes “⊃”; obviously, also the converse holds, isometri-
cally. ¤

For every R ∈ B(U,L2(R+; Y)) we can define the Laplace transform R̂ ∈
B(U,H2(C+; Y)) by R̂u0 := R̂u0. This map is an isometric isomorphism onto, by
Lemma 1.3.

The space

L2
strong(R+;B(U, Y)) := {f : R+ → B(U, Y)

∣∣ fu0 ∈ L2(R+; Y) for all u0 ∈ U}. (4.2)
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is a subspace B(U,L2(R+; Y)), by the closed-graph theorem [4, Lemma F.1.6].
Therefore, every f ∈ L2

strong(R+;B(U, Y)) has a Laplace transform f̂ ∈ H2
strong

satisfying f̂u0 = f̂u0 (u0 ∈ U).
From this and Theorem 1.2(b) we conclude that an impulse response R can

be realized as a WPLS with a bounded input operator iff R ∈ B(U, L2
ω(R; Y)) for

some ω ∈ R. Example 4.3 below shows that not all such R can be identified with
a function.

In Lemma 4.4 we shall show that the impulse response R of Example 4.3 also
satisfies R̂(̄·)∗ ∈ H2

strong(C+;B(U, Y)). By Theorem 1.2(d), this implies that R is
the impulse response (i.e., R̂ is the transfer function) of a PS-system. Thus, by
Theorem 1.2(d), we will establish the following:

Corollary 4.2. There exists a PS-system with input space U = `2(N) and output
space Y = `2(N) such that its impulse response does not correspond to any function
R+ → B(U, Y).

Now it only remains to construct the function D̂ = R̂ with the properties
promised above. We start with the incompleteness of L2

strong:

Example 4.3. Let U := `2(N). The continuous functions fn : [0, 1] → B(U) con-
structed below form a nonconvergent Cauchy-sequence in L2

strong([0, 1];B(U)). Nat-
urally, the (corresponding multiplication operator) sequence converges in the Ba-
nach space B(U; L2([0, 1]; U)) to a map R. We also have fn(t) = fn(t)∗ for all
t ∈ [0, 1] and n ∈ N.

As above, we identify fn with the multiplication operator Mfn : u0 7→ fnu0.
In the proof below we construct diagonal functions fn : [0, 1] → B(U) such

that fnu0 converges in L2 for each u0 ∈ U but any “limit function” f would be such
that f(t) is an unbounded operator for almost every t ∈ [0, 1]. This is achieved
by letting the diagonal elements of “f” to be suitable translates of an unbounded
scalar function g ∈ L2, so that at each t ∈ [0, 1] arbitrarily high values are attained
by some of the translates.

Proof. 1◦ The construction of {fn}: Set g(t) := |t|−1/3, gn(t) := (|t| + 1/n)−1/3.
Observe that g ∈ L2([−1, 1]). Furthermore, gn(t) → g(t) monotonously for each t
and ‖g − gn‖L2([−1,1]) → 0.

Denote the natural base of U by {ej

∣∣ j ∈ N}. By Pk ∈ B(U) we denote the
natural (coordinate) projection Pk :

∑
j∈N xjej 7→ xkek (k ∈ N).

Let {qk} ⊂ [0, 1] be dense. For every t ∈ [0, 1] and n ∈ N, define fn(t) :=∑
k∈N gn(t− qk)Pk, i.e.,

fn(t)x :=
∑

k∈N
gn(t− qk)xkek (x ∈ U). (4.3)

Obviously, fn(t)∗ =
∑

k∈N gn(t− qk)P ∗k =
∑

k∈N gn(t− qk)Pk for all n and t.
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2◦ fn : [0, 1] → B(U) is continuous: Let n ∈ N, t ∈ [0, 1] and ε > 0. Because
gn is (uniformly) continuous, there exists δ > 0 such that |gn(t′)− gn(t′′)| < ε for
any t′, t′′ ∈ [−1, 1] such that |t′− t′′| < δ. If t, t′ ∈ [0, 1], |t′− t| < δ and x ∈ U, then

‖(fn(t)−fn(t′))x‖2U = ‖
∑

k

xk(gn(t−qk)−gn(t′−qk))ek‖2U ≤
∑

k

|xk|2ε2 = ε2‖x‖2U.

(4.4)
Consequently, ‖fn(t)− fn(t′)‖ ≤ ε. Because ε > 0 was arbitrary, fn is continuous.

3◦ fn → R in B(U,L2([0, 1]; U)): For every t ∈ [0, 1], n ∈ N, and x ∈ U, we
define the diagonal operator R : U→ L2 by R :=

∑
k∈N g(· − qk)Pk, i.e.,

Rx :=
∑

k∈N
g(· − qk)xkek (x ∈ U). (4.5)

Given ε > 0, there exists N ∈ N such that for all n > N we have ‖g −
gn‖L2([−1,1)) < ε and, consequently (because ‖h‖22 =

∑
k ‖Pkh‖22 for every h :

[0, 1] → U, and PkRx = g(· − qk)xkek)

‖fnx−Rx‖2L2([0,1];U) ≤
∑

k

|xk|2‖gn(· − qk)− g(· − qk)‖2L2([0,1]) ≤ ε2‖x‖2U (x ∈ U).

(4.6)
Therefore, Mfn → R in B(U,L2([0, 1]; U)). In particular, {fn} is L2

strong-Cauchy.
4◦ {fn} does not converge in L2

strong: To obtain a contradiction, we assume
that R = Mf for some f : [0, 1] → B(U) and deduce that ‖f(t)‖B(U) = ∞ a.e.

Indeed, if fn → f in L2
strong([0, 1];B(U)), then fx = limn fnx = Rx in L2,

hence fx = Rx a.e. on [0, 1], for every x ∈ X. Consequently, there exists a null set
N such that fek = Rek on [0, 1] \N for any k ∈ N.

Let t ∈ [0, 1]\N and γ < ∞ be arbitrary. By the density of {qk} in [0, 1], there
exists k such that g(t−qk) = |t−qk|−1/3 > γ and hence ‖f(t)ek‖U = ‖R(t)ek‖ > γ,
by (4.5). Consequently, ‖f(t)‖B(U) > γ. Because γ < ∞ was arbitrary, f(t) 6∈ B(U),
a contradiction. ¤

(This shows that L2
strong is a proper, non-closed subspace of B([0, 1]; L2(U)).)

Now we establish the remaining required properties:

Lemma 4.4. The function R̂ constructed in Example 4.3 satisfies R̂ = R̂(̄·)∗ ∈
H2

strong(C+;B(U)).

Proof. Recall that we consider L2([0, 1]; U) as a subspace of L2(R+; U). Thus, by
Lemma 4.1, we have R̂ ∈ H2

strong(C+;B(U)), where R̂(s)x = R̂x(s) for each x ∈ U.
Because R is real and diagonal, for any x, y ∈ U we obviously have 〈Rx, y〉 = 〈x,Ry〉
as elements of L2([0, 1]), hence

〈R̂(s)x, y〉 = 〈R̂x(s), y〉 =
∫ 1

0

e−st〈(Rx)(t), y〉dt =
∫ 1

0

e−st〈x, (Ry)(t)〉dt (4.7)

= 〈x,

∫ 1

0

e−s̄t(Ry)(t) dt〉 = 〈x, (R̂y)(s̄)〉 = 〈x, R̂(s̄)y〉. (4.8)
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¤
N.B. in [4, Example F.3.6] it was shown that the boundary trace of R̂ belongs

to L2
strong(iR;B(U)) (in fact, R̂ has a continuous extension to C). Since R (hence

nor ˆ̂
R = 2πR(−·)) is not L2

strong, it follows that the Fourier transform does not
map (all continuous elements of) L2

strong into L2
strong.

More on Lp
strong and Hp

strong can be found in [4, Appendix F].
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